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ABSTRACT

In this paper, we address the suppression of frequency modu-
lated jammers in a multi-sensor Global Navigation Satellite
System (GNSS) receiver. In particular, we consider the
case of sparsely sampled signals and compressed observa-
tions. In this case, applying conventional time-frequency
(TF) analysis for jammer characterization produces noise-like
artifacts which, if not properly considered, would obscure
the jammer TF representation and lead to considerable errors
in jammer signal estimation and excision. In the proposed
approach, a multi-sensor data-dependent TF kernel is applied
for effective mitigation of artifacts due to missing samples.
Sparse reconstruction methods are then applied to obtain
nonparametric instantaneous frequency estimation. We apply
the continuous-structure aware Bayesian compressive sensing
method to exploit the contiguous nature of the jammer TF
signature, leading to enhanced localization and suppression.

Index Terms— Navigation, anti-jamming receiver, time-
frequency analysis, Bayesian compressive sensing

1. INTRODUCTION

A Global Navigation Satellite System (GNSS), such as the
Global Positioning System (GPS), is vulnerable to jamming
signals. As such, anti-jam capability has become essential
for reliable satellite navigation. Commonly used jammers
are frequency modulated (FM) signals whose level of com-
plexity ranges from a chirp-like waveforms to higher-order
polynomial phase signals. FM jammers cannot be simply
mitigated by windowing or filtering. It is rather more effective
to represent the jammer signals in the joint time-frequency
(TF) domain where they, due to their instantaneous power
concentrations, are revealed when accompanied by low power
GNSS signals that are spread over the entire domain [1].
Accurate estimation of the jammer instantaneous fre-
quencies (IFs) allows effective jammer suppression. Several
techniques can be used for this purpose, including jam-
mer waveform synthesis, time-varying notch filtering, and
orthogonal projection. These techniques begin with TF
signal representation where the local properties of the jammer
can be captured [2, 3]. A number of methods have also
been developed for parametric estimations of FM jammer
signals in which the jammer polynomial phase characteristics

are utilized [4-7]. It is noted that, irrespective of the
employed suppression method, the use of spatial degrees
of freedom through multi-antenna receiver configuration has
led to a more effective IF estimation, jammer suppression
and GNSS signal preservation [8-10]. Traditional anti-
jamming GNSS receivers assume the jammed GNSS signals
to be uniformly sampled. In real-world operations, however,
samples of the jammed GNSS signals may be randomly
missing due to, for example, multipath fading, line-of-sight
obstructions, removal of narrow interference or impulsive
noise [11]. As a result, the observed data may be sparsely
sampled. Missing samples generate noise-link artifacts in the
TF domain representations, making conventional approaches
for anti-jam infeasible.

Recovery and/or IF estimation of FM signals from
sparsely sampled observations fall under the emerging area
of compressive sensing and sparse reconstruction [12—14].
Owing to their instantaneous narrowband characteristics,
these signals exhibit local sparsity when viewed through a
short window or when they, in general, are represented in
the joint-variable TF domain. The sparsity property invites
compressive sensing and sparse reconstruction techniques
to play a role in anti-jam GNSS. In [12], the effect of
missing samples on bilinear time-frequency distributions
(TFDs) is analyzed. IF estimation based on applying a
signal-dependent adaptive optimal kernel (AOK) together
with sparse signal reconstruction is described. In [13], a
structure-aware Bayesian compressive sensing (SA-BCS)
algorithm is developed which exploits the continuous IF
structure of FM signals.

We perform anti-jam for multi-antenna GNSS receivers
under compressed observations [15]. In this paper, we
consider the case of multiple jammers and exploit SA-BCS
to estimate the IFs of the jammer signals. To account
for practical multipath propagation environments, each FM
jammer is assumed to have an arbitrary spatial signature,
which is estimated for effective joint space-time domain
jammer suppression. We use the linear model relating the TF
signal representation and the instantaneous autocorrelation
function (IAF) [12, 13]. The IAF in the model is generated
by applying AOK so as to eliminate, or at least significantly
reduce, the artifacts due to missing samples as well as cross-
terms due to interactions of jammer signal components.

Notations: We use lower-case (upper-case) bold charac-



ters to denote vectors (matrices). In particular, Iy denotes the
N x N identity matrix. (.)* denotes complex conjugation, and
()7 and (), respectively, stand for transpose and Hermitian
operations. F,, and F ! respectively denote discrete Fourier
transform (DFT) and inverse DFT (IDFT) matrices with
resect to x. In addition, we use d(x) to denote the Dirac delta
function of , ) the Kronecker product, and 7 = /1.

2. SIGNAL MODEL

GNSS signals and the associated jammers adhere to the nar-
rowband signal model. Considering an /N-elements array that
receives GNSS signals s;(t),i = 1, -+ ,Qg, contaminated
by FM jammer signals s;(t),j = 1,---,Q, the discrete-
time received signal vector can be expressed as

Qs Qs
y() =Y hisi(t) + > hys;(t) +n(t), (1)
i=1 j=1

for 0 < ¢ < T — 1, where h; and h; are the N x 1 spatial
signature vectors respectively for the ith GNSS signal and the
jth jammer. The jammer signals s;(¢),j = 1,---,Q, are
considered FM signals with a unit power. In addition, n(¢) is
the IV x 1 additive white Gaussian noise vector CA/(0, oIy ).
Note that ¢ is discretized with a sampling interval of At. The
GNSS signals and the jammers are not required to assume
a clear steering vector, making this model more practical in
environment with rich multipath propagation.

Consider sparse sampling of the array observations with a
random pattern applied to each array sensor. As such, for the
nth array sensor, the sparse observation is given as

In (t) = yn(t) “bn, (t)v 2

where y,,(t) is the nth element of y(¢), and b, (¢t) € {0,1}
is the observation mask. We denote the index set of nonzero
elements of b, (t) as S,, with cardinality |S,,| = T — M,,. The
sparsity pattern b,,(¢) may or may not the same for different
antenna sensors.

3. TIME-FREQUENCY REPRESENTATIONS AND
SPARSE RECONSTRUCTION

3.1. Adaptive Optimal Kernel

The ambiguity function (AF) for signal x,,(t) is defined as
[16, 17]:

A (0,7) = /OO T (t + g) x, (t - g) e 20t qr (3)

— 00

where 6 and 7 are, respectively, the frequency shift (Doppler)
and the time lag.

The two-dimensional (2-D) DFT of the AF is the Wigner-
Ville distribution (WVD), which is usually considered as the
prototype TFD before a TF kernel is applied. The WVD
provides a high resolution for linear frequency modulated
(LEM) signals, but it generally suffers from cross-terms when
the signals are not simple LFM waveforms or contain multiple
signal components.

To reduce the effect of cross-terms, which lie away from
the origin in the ambiguity domain, a TF kernel function of
low-pass filter characteristics is often applied to the AF. TF
kernels can be data-independent or data-dependent. The latter
usually yields better performance due to its adaptivity to the
signal. A well-known data-dependent kernel is the AOK,
which is obtained by solving the following optimization
problem for AF A(r, 1)) defined in the polar coordinates [18]:

21 [e%s)
max /0 /0 | A(r, )B(r, )2 rerd

subject to  D(r, 1)) = exp <_2UT(2¢)> ; “)
1 2
) <o,

where o« > 0 is a constant.

In a multi-sensor array platform, it is possible to design
the AOK independently for each antenna. However, it is
important to note that proper fusion of the multi-sensor
data would produce a cleaner AF that yields a combined
sensor AOK. A simple and effective strategy is to exploit
the property that the AF auto-terms of the incoming signals
are identical across all array sensors [9, 19] and thus can be
coherently combined. We average the AFs over all sensors in
(4) in lieu of only considering A(r, 1)) obtained from a single
sensor [20]:

N
As(r) = = 3 Anlr ). )
n=1

3.2. Time-Frequency Representations through Sparse
Reconstruction

In the next step, we consider the IF estimation of the jammer
signals. Because the IFs are shared by all the antennas, we
can compute only those corresponding to the averaged AF,
Ax(r,1). Denoted the kernelled AF in the polar coordinates

as Ax(r,1p) = As(r,1))®x(r, 1)), which is converted to the

Cartesian coordinate system as Ay (6, 7). Let Ay, represent
the AF matrix of Ay (6, 7) with all § and 7 entries.

A conventional kernelled TFD matrix is obtained by a 2-D
DFT of the kernelled AF matrix, expressed as

Dy =F,'AsF,. (6)

Alternatively, we can obtain the TFD through sparse recon-
struction from Ay;. In this case, rather than utilizing the 2-D
DFT relationship between the AF and the TFD as in [19, 21],
it is shown in [12, 13] that the one-dimensional (1-D) DFT
relationship between the IAF and the TFD yields simpler
computations and, more importantly, enables the exploitation
of local sparsity in the TF domain at each time instant ¢.

The 1-D IDFT of Ay with respect to € results in the
kernelled TAF matrix C, which is represented with respect
to time ¢ and time delay 7 as

C=F,'As. ™)



Denote cl*! as a column of matrix C corresponding to time ¢,
and wl! as a vector contains all the TFD entries with respect
to the frequency for the same time ¢. Then, the 1-D DFT
relationship between the IAF and the TFD becomes

cl =F,wlt )

for 0 < t < T — 1. This is a standard compressive
sensing formulation and can be solved by a number of
methods, such as the orthogonal matching pursuit (OMP),
LASSO, and Bayesian compressive sensing [22-24]. In this
paper, we use the the SA-BCS algorithm [13] to perform
sparse reconstruction of the TFD, which is repeated in each
time instant. A brief review of the SA-BCS is provided
in the following subsection. Due to the the utilization of
the connected structures of the IF signature, the SA-BCS
generally provides improved performance as compared to
other compressive sensing methods [13, 25].

3.3. Structure-aware Bayesian compressive sensing

The SA-BCS maximizes the posterior probability of a sparse
vector wll given the IAF vector cl!! as the observation.

Denote wl[t] as the /th element of wl!l, where [ € [0,...,T—
1] is the frequency domain index. To encourage sparsity of the

TF signatures, the following spike-and-slab prior is placed to
wl [26], ie.,

plwf|xf, sH=(1 — xM)é(wf?) + wen (w0, (8.

(€))

Here, wl[t] is the prior probability of a nonzero element, and
[ s the . . . .

0 precision (reciprocal of variance) of Gaussian

distribution.
To make the inference analytical, we introduce the prod-

1] _ ltlgld

uct of two latent variable w;” = z;°0;" to follow the pdf in

Eq. (9), where Olm follows a complex Gaussian distribution

CN(0,[85-1) and =" follows the Bernoulli distribution

Bem(wl[t]). zl[t] is a binary variable with zl[t] = 0 correspond-

ing to zero value for the /th entry in the time ¢.

To encourage continuity pattern in the joint TF domain,
we utilize data in the neighborhood time instants of ¢ — 1
and ¢ + 1, when the TF signatures in the time instant ¢ are
estimated. Based on the idea of continuity, we categorize
the relationship into three different patterns. As shown in
Fig. 1, different priors on wl[t] are placed to encourage the
TFD patterns with diagonal nonzero entries (Fig. 1(a)) and
discourage those with all zero or all nonzero neighboring
entries (Fig. 1(b)). Other patterns are placed with a neutral
prior (Fig. 1(c)).

4. JAMMER SUPPRESSION THROUGH JOINT
SPACE-TIME DOMAIN PROJECTION

4.1. Spatial Signature Estimation

When IFs of all the jammers are estimated as fj t),t =
1,---,T,forj=1,---,Qy, the corresponding phase profile
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Fig. 1. Example TFD sparsity patterns. White and blue
squares respectively denote zero and nonzero entries, and red
squares represent the entry under test. (a) highly encouraged
cases; (b) highly encouraged cases; and (c) neutral cases.

can be estimated as
t
$i(t) =21 fi(w)At. (10)
u=0

The phase profile is common to all antennas up to an antenna-
dependent constant phase shift for each jammer. Note that, for
the actual observations, only those samples in S,, are available
at the nth antenna. As such, we reconstruct the estimated
waveform of the jth jammer at the nth antenna as

djn(t) = Ny - exp(36; (1)) - bu(t), (11)

where I ,, is the nth element of h; to be estimated.
For notational convenience, denote

d;(t) = exp(30; () - bu(t), (12)

which is the sparsely sampled estimate of s;(t). When the
jammer components are separable in the TF domain, the
following operation yields the the maximum likelihood (ML)
estimate of a; ,,

T—

hjn ="y xn(t) - d;(t) - p(t), (13)

t=0

=

where p(t) is a window function. Here, the multiplication by
d; (t) demodulates the received signal into the zero frequency
band, commonly referred to as direct current (DC) compo-
nent, and the summation amounts to low-pass filtering that
accumulates the energy of the demodulated jth jammer over
all T' samples whereas the other jammer components and the
majority of the GNSS signals are filtered out. Other TF-based
filtering methods are discussed at, e.g., [27].

Note that, the estimated IFs f;(t),j = 1,---,Q, may
not be sufficiently accurate due to, for example, noise per-
turbation or frequency discretization error. In this case, the
entire data should be partitioned into multiple segments such
that the phase variation of x,,(t) - dj(t) is insignificant over
each segment. By taking the first sensor as phase reference,
the spatial signatures obtained from all the segments can be
coherently combined.



4.2. Jammer Suppression

We use the orthogonal projection scheme for effective
jammer suppression. The received signal vector, X =
[xT(0),--- ,xT(T — 1)]¥, defined over the joint space-
time domain, is projected into the orthogonal subspace of
the estimated jammers [8]. Consider the estimated temporal
signature of the jth jammer as §; = [d;(0), -+ ,d;(T —
1)]7 . The Kronecker product of the temporal signature and
its spatial signature, h;, yields its overall subspace defined
in the joint space-time domain, denoted as v; = flj X s,
where }Alj = [ilj)l, s ,ilj7N]T~ Let V = [Vla T 7VQJ]'
The projection matrix into the orthogonal subspace of the
jammers is given by [8]

P=Iyy—V(VIV) VI (14)

The jammer-suppressed time-domain samples corresponding
to the ith GNSS signal, after combining signals received
at all sensors, are expressed as the following 7" x 1 vector
X; = ﬂfIPi,fori =1,---,Qg, where H; = h; Q@ Ir. The
estimation of the spatial signature of the :th GNSS signal, h;,
is discussed, e.g., in [28].

5. SIMULATION RESULTS

Simulations are carried out to verify the effectiveness of the
proposed method. We consider the L1 band GPS signals with
the C/A codes, and a two-element (N=2) array with a half-
wavelength interelement spacing is used. We set the input
signal-to-noise ratio (SNR) of the GPS waveform as —16 dB.
Two jammers are considered, and the input jammer-to-noise
ratio (JNR) of both jammer signals are assumed to be 25 dB.

Sample the received jammed GPS signal at the chip rate
of the GPS signal, which is 1.023 MHz. The normalized IF
laws of the two FM jammers are assumed to be

fi(t) = 0.05 + 0.05t/T + 0.1¢%/T?, (15
fo(t) = 0.15+ 0.05t/T + 0.1¢% /T2, (16)

for t = 0,...,7 — 1, where the block size of the signal
is chosen to be " = 256. We assume that 50% of the
received data samples are randomly missing, and the missing
patterns at the two antennas are uniformly and independently
distributed.

We focus on one GPS signal. Due to multipath prop-
agation, the GPS signal as well as the two jammers are
assumed not to have a clear steering direction. The used
spatial signatures of the GPS signal and the two jammers are
represented in the following matrix:

~1.22+0.24j 1.39+0.66j 0.16 —0.39]

H=l ) 1340.95] —0.44—0.35] —0.50 —0.267 °

a7

The magnitudes of the spatial correlation [29] between the
GPS signal and the two jammers are respectively 0.625 and
0.579, whereas that between the two jammers is 0.296.

In Fig. 2(a), the real-part of the jammed GPS signal
waveform received at the first antenna is shown, where
the red dots represent the 64 missing data samples. The

I
=

03

Waveform-real part
S

Normalized Frequency

°

50 100 150 200 250
Time

(b) WVD

Normalization Frequency
Normalization Frequency

(c) Kernelled TFD (d) Reconstructed TFD
Fig. 2. Signal waveform and TFD results.

40

0 5 10 15 20 25 30 35 40 45
JNR (dB)

Fig. 3. Output SINR versus input JNR.

corresponding WVD averaged over the two antennas is shown
in Fig. 2(b). Due to the missing data samples, the WVD is
cluttered by the artifacts which make it difficult to accurately
estimate the IF of the jammer signals.

Fig. 2(c) shows the averaged TFD obtained from the 2-
D DFT after applying the AOK. It is clear that the artifacts
are significantly suppressed. The TFD reconstructed from the
SA-BCS is shown in Fig. 2(d), which is used for estimation of
the jammer IFs and the phase profiles. The entire observation
period is divided into half-overlapping segments of length 32
for phase profile estimation and jammer suppression.

The yielding output SINR, evaluated in the despread GPS
symbol and averaged over the 100 independent trails, is
shown in Fig. 3 where the input JNR varies between 0 dB
and 45 dB. It clearly shows the effectiveness of the proposed
nonstationary jammer suppression approach the improvement
due to the exploitation of multiple sensors.

6. CONCLUSION

We have developed an effective FM jammer suppression
method in a multi-sensor GNSS receiver suitable for com-
pressed observations and missing samples. The proposed
method first utilized the multi-sensor data-dependent kernel
to mitigate the artifact. The IF estimation of the jammer
signals was obtained using the recently developed SA-BCS
methods. By exploiting the ML estimates of the spatial sig-
nature of each jammer, effective jammer excision is achieved
through orthogonal projection in the joint space-time domain.
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