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Abstract—A novel design for wideband uniform linear arrays
(ULAs) with the associated group-sparsity based direction-of-
arrival (DOA) estimation method is proposed. This design al-
lows the number of source signals to significantly exceed the
number of sensors. Linear frequency modulated continuous
wave (LFMCW) is used as the transmitted signal to ensure
the required correlation property among different frequencies.
The received echo signals from multiple targets are decomposed
into different frequencies by discrete Fourier transform (DFT).
Then these frequency bins are divided into several pairs to
increase the degrees of freedom (DOFs) based on the co-array
concept in the spatio-spectral domain. Group sparsity based
signal reconstruction method is employed to jointly estimate the
DOA results across multiple frequency pairs. Simulation results
demonstrate a significantly improved performance achieved by
the proposed method.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is an important area
in array signal processing [1]. Commonly used methods for
DOA estimation include capon beamforming [2], MUSIC [3],
and ESPRIT [4]. It is well known that, for a uniform linear
array (ULA) with M sensors, M − 1 source signals can be
resolved effectively. To fully exploit the available degrees
of freedom given a fixed number of sensors, various sparse
array constructions have been proposed enabling the resolution
of higher number of sources than physical sensors [1]. One
representative example is the minimum redundant linear array
(MRLA) [5], where the redundancy is minimum among all
possible layouts of the array sensors. However, there is no
systematic approach for designing an MRLA, especially when
the number of array sensors is large.

Recently, two classes of sparse arrays have been proposed,
namely nested arrays and co-prime arrays [6]–[8]. A two
level passive nested array includes two ULAs to achieve high
number DOFs based on the co-array concept. This property
is exploited for narrowband DOA estimation [6], [9], [10],
and then extended to the wideband case [11]. These methods
apply the spatial smoothing approach to undo the coherence
of the processed data. A typical co-prime array consists of two
sub-arrays with significantly increased DOFs and subspace
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DOA estimation methods for narrowband co-prime arrays have
been presented in [8], [12]–[14], whereas compressive sensing
based methods have been proposed in [13], [14]. Generaliza-
tion of co-prime arrays with compressed inter-element spacing
and displaced sub-array design is considered in [15], and
the achievable DOFs is provided. In [16], [17], the latter is
extended to the wideband case based on the group sparsity
concept. For both classes of sparse arrays, at least two ULAs
are needed in their configurations.

More recently, the co-prime array concept is extended to
the frequency domain in [13], where instead of employing
two ULAs, a single ULA is used with two continuous-
wave signals of co-prime frequencies. In this case, the ULA
operating at two different frequencies acts as two equivalent
sub-arrays in the co-prime array structure. The number of
achievable degrees of freedom for such a ULA is derived
in [18]. In this paper, this idea is further extended to the
wideband case, and a method for wideband DOA estimation
employing multiple frequency pairs is proposed. The key to
the success of this method is to ensure the required correlation
characteristic among different frequency components of the
received echo signals, which can be achieved using linear
frequency modulated continuous wave (LFMCW) signal as
the transmitted waveform. A ULA structure can then be
designed with adjacent inter-element spacing d according to
the frequency band of interest. The received echo signals
are first decomposed into different frequencies by a discrete
Fourier transform (DFT), which are subsequently divided into
several pairs to increase the number of DOFs based on the co-
array concept in the spatio-spectral domain. The group sparsity
based signal reconstruction method is employed to estimate the
DOA results across multiple frequency pairs [19]. Simulation
results show that a high number of DOFs can be provided by
only a single ULA, with a significantly improved performance
achieved.

This paper is organized as follows. The system model
design for our proposed method is presented in Section II, and
the proposed wideband DOA estimation method for multiple
frequency pairs is proposed in Section III. Simulation results
are provided in Section IV, and conclusions are drawn in
Section V.
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Fig. 1. Structure of a general uniform linear array.

II. SYSTEM MODEL DESIGN

A. Signal Model

For our wideband array model, the LFMCW signal is used
as the wideband transmitted waveform. In addition to their
desirable attributes in wideband high resolution applications,
LFMCW signals are preferred in the underlying problem
due to the correlation property among different frequencies.
This property is required for generating the difference co-
array needed in the spatio-spectral domain. The transmitted
LFMCW signal with a bandwidth B and an initial frequency
fc can be expressed as

s(t) = Aej(2πfct+πα·mod(t+τ,T )2+ϕ) , (1)

where A is the signal amplitude, α = B/T is the chirp rate
with T as the modulation period, τ is an initial time-offset, ϕ
represents the initial phase, and mod(t+ τ, T ) is a shorthand
notation for (t+ τ modulo T ).

Consider an M -sensor ULA with an adjacent sensor spacing
d, as shown in Fig. 1. The set of sensor positions can be
expressed as S:

S = {md, 0 ≤ m ≤M − 1,m ∈ Z} , (2)

where Z is the complete integer set.
Assume that there are K targets distributed at incident

angles θk, k = 1, 2, . . . ,K, respectively, where θk is measured
from the broadside of the array. Then, the echo signals
observed at the m-th sensor can be expressed as:

xm(t) =

K∑
k=1

γk(t) · s [t− τm(θk)] + nm(t) , (3)

where γk(t) is the time-varying reflection coefficient owing to
target motion or radar cross section (RCS) fluctuations. Since
the target reflectivity may be different across the signal band-
width and the phase delay varies with frequency, the reflection
coefficient is in general frequency-dependent. Take the zeroth
position of the ULA as the reference. Then τm(θk) represents
the time delay of the k-th echo signal with the incident angle
θk arriving at the m-th sensor of the array. nm(t) is the
Gaussian white noise observed at the corresponding sensor.

Assume that the sampling frequency fs is larger than twice
the highest frequency of the signal. Then the discrete version
of the received echo signals can be expressed as

x[i] =
[
x0[i], x1[i], . . . , xM−1[i]

]T
, (4)

where {·}T denotes the transpose operation.
Each received sensor signal is divided into non-overlapping

groups with length L, and an L-point DFT is applied. The l-th

frequency bin samples of the p-th group can be placed into
one vector as follows

X [l, p] =
[
X0[l, p], X1[l, p], . . . , XM−1[l, p]

]T
, (5)

where

Xm[l, p] =

L−1∑
i=0

xm[L · (p− 1) + i] · e−j 2π
L il , (6)

with p = 0, 1, . . . , P − 1, and l = 0, 1, . . . , L− 1.
Define Sk[l, p] and Nm[l, p] as the DFT of the p-th

group discrete-time echo signals γk[i]s[i] and discrete-time
noises nm[i] at the m-th sensor, respectively. S[l, p] =[
S1[l, p], . . . , SK [l, p]

]T
is the column signal vector at the l-th

frequency bin, while N[l, p] =
[
N0[l, p], . . . , NM−1[l, p]

]T
is

the corresponding column noise vector. Then, the output signal
model in the DFT domain is given by

X[l, p] = A(l,θ)S[l, p] + N[l, p] , (7)

where A(l,θ) = [a(l, θ1), . . . ,a(l, θK)] is the steering matrix
at frequency fl corresponding to the l-th frequency bin. The
frequency interval between adjacent frequency bins is f∆ =
fs/L. The steering vector a(l, θk) at the l-th frequency bin
and angle θk is expressed as

a(l, θk) =

[
1, e

−j 2πd
λl

sin(θk)
, . . . , e

−j 2π(M−1)d
λl

sin(θk)

]T
, (8)

where λl = c/fl and c is the propagation velocity of the signal.
We design the inter-element sensor spacing d to be

d =
c

2f∆
· δ , (9)

where δ is a variable used to adjust the spacing of the array.
Based on the co-array concept, we will show that δ should
be less than 1 to avoid spatial aliasing. The largest aperture
corresponding to the best estimation performance is achieved
at δ = 1. Accordingly, (8) can be changed into

a(l, θk) =
[
1, e−jπlδ sin(θk), . . . , e−jπ(M−1)lδ sin(θk)

]T
.

(10)

III. WIDEBAND DOA ESTIMATION BASED ON MULTIPLE
PAIRS OF FREQUENCY BINS EMPLOYING GROUP SPARSITY

A. Virtual array generation for one frequency pair

Assume that the echo signal bandwidth covers Q frequency
bins in the DFT domain. Φl represents the set of Q frequency
bin indexes, and each frequency bin lq ∈ Φl, 0 ≤ q ≤ Q− 1.

We select N pairs of frequency bins, with the n-th pair
consisting of the frequency bins ln1 and ln2 , where ln1 ∈ Φl,
ln2 ∈ Φl, and ln1 6= ln2 . Then, the auto-correlation matrix at
the two frequencies can be obtained by

Rx[ln1 , ln1 ] = E
{
X[ln1 , p] ·XH [ln1 , p]

}
=

K∑
k=1

σ2
k[ln1

, ln1
]a(ln1

, θk)aH(ln1
, θk) + σ2

n[ln1
, ln1

]IM ,

(11)
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Rx[ln2
, ln2

] = E
{
X[ln2

, p] ·XH [ln2
, p]
}

=

K∑
k=1

σ2
k[ln2

, ln2
]a(ln2

, θk)aH(ln2
, θk) + σ2

n[ln2
, ln2

]IM ,

(12)

where {·}H denotes the Hermitian transpose, E{·} is the
statistical expectation operator, and IM is the M ×M identity
matrix. The parameters σ2

k[ln1 , ln1 ] and σ2
k[ln2 , ln2 ] represent

the powers of the k-th impinging signal at the corresponding
frequency bins, whereas σ2

n[ln1 , ln1 ] and σ2
n[ln2 , ln2 ] define the

corresponding noise powers.
The cross-correlation matrix across the two frequency bins

is shown as

Rx[ln1 , ln2 ] = E
{
X[ln1 , p] ·XH [ln2 , p]

}
=

K∑
k=1

σ2
k[ln1 , ln2 ]a(ln1 , θk)aH(ln2 , θk) ,

(13)

Rx[ln2 , ln1 ] = E
{
X[ln2 , p] ·XH [ln1 , p]

}
=

K∑
k=1

σ2
k[ln2

, ln1
]a(ln2

, θk)aH(ln1
, θk) .

(14)

In the above covariance matrices, σ2
k[ln1 , ln1 ], σ2

k[ln2 , ln2 ],
σ2
n[ln1 , ln1 ], and σ2

n[ln2 , ln2 ] are all real and positive, while
σ2
k[ln1 , ln2 ] and σ2

k[ln2 , ln1 ] are in general complex values due
to the phase shift between different frequency bins caused by
the LFMCW echo signal and the reflection coefficient.

Since Rx[ln1 , ln2 ] = RH
x [ln2 , ln1 ], we only use the for-

mer in the estimation process. In practice, Rx[ln1 , ln1 ],
Rx[ln2 , ln2 ], and Rx[ln1 , ln2 ] can be replaced by their finite-
sample estimates over P signal blocks under the assumption
of wide-sense stationary.

By vectorizing the auto-correlation matrices, we obtain

z[ln1
, ln1

] = vec {Rx[ln1
, ln1

]}
= Ã[ln1

, ln1
]̃s[ln1

, ln1
] + σ2

n[ln1
, ln1

]̃IM ,
(15)

z[ln2
, ln2

] = vec {Rx[ln2
, ln2

]}
= Ã[ln2

, ln2
]̃s[ln2

, ln2
] + σ2

n[ln2
, ln2

]̃IM ,
(16)

with equivalent steering matrices of the two virtual arrays

Ã[ln1
, ln1

] = [ã(ln1
, ln1

, θ1), . . . , ã(ln1
, ln1

, θK)] ,

Ã[ln2
, ln2

] = [ã(ln2
, ln2

, θ1), . . . , ã(ln2
, ln2

, θK)] ,
(17)

where the equivalent steering vectors ã(ln1 , ln1 , θk) =
a∗(ln1 , θk) ⊗ a(ln1 , θk), and ã(ln2 , ln2 , θk) =
a∗(ln2 , θk) ⊗ a(ln2 , θk), with ⊗ denoting the
Kronecker product. The equivalent signal vectors
s̃[ln1

, ln1
] =

[
σ2

1 [ln1
, ln1

], . . . , σ2
K [ln1

, ln1
]
]T

and
s̃[ln2

, ln2
] =

[
σ2

1 [ln2
, ln2

], . . . , σ2
K [ln2

, ln2
]
]T

. ĨM is a
(M)

2 × 1 column vector obtained by vectorizing the identity
matrix IM .

Vectorizing the cross-correlation matrices yields another
virtual array, given by

z[ln1
, ln2

] = vec {Rx[ln1
, ln2

]}
= Ã[ln1

, ln2
]̃s[ln1

, ln2
] ,

(18)

with

Ã[ln1
, ln2

] = [ã(ln1
, ln2

, θ1), . . . , ã(ln1
, ln2

, θK)] , (19)

where its equivalent steering vectors ã(ln1
, ln2

, θk) =
a∗(ln2

, θk) ⊗ a(ln1
, θk), and the equivalent signal vector

s̃[ln1 , ln2 ] =
[
σ2

1 [ln1 , ln2 ], . . . , σ2
K [ln1 , ln2 ]

]T
.

For different combinations of ln1
and ln2

, different co-arrays
can be obtained. These co-arrays provided in (15), (16), and
(18) can be combined together to characterise a large virtual
array with positions distributed at the self-difference co-array
sets

{(ln1
m1 − ln1

m2), 0 ≤ m1,m2 ≤M − 1} ,
{(ln2

m1 − ln2
m2), 0 ≤ m1,m2 ≤M − 1}

and the cross-difference set

{±(ln1m1 − ln2m2), 0 ≤ m1,m2 ≤M − 1} .

For a special case, ln1 and ln2 can be chosen to be co-
prime. Then the signals at the ln1 -th frequency bin and
the ln2 -th frequency bin can be considered as signals re-
ceived by two sub-arrays of a co-prime array with 2M −
1 − floor[L/max(ln1 , ln2)] equivalent physical sensors [13],
where floor{·} returns the largest integer not exceeding the
argument and max{·} returns the maximum value of the input
vector. In so doing, an increased number of DOFs emerges by
the equivalent virtual co-prime array [7], [13], [14].

In fact, no matter how ln1
and ln2

are selected, i.e., co-
prime or nested, the number of co-array virtual sensors would
be much larger than the number of physical sensors M .
These increased degrees of freedom can be exploited for DOA
estimation to handle a higher number of echo signals.

B. Group sparsity based DOA estimation for one frequency
pair

Although s̃[ln1
, ln1

], s̃[ln2
, ln2

], and s̃[ln1
, ln2

] may be dif-
ferent from each other, these vectors share the same spatial
support and we can estimate the DOA of targets based on the
group sparsity concept.

For the n-th pair of frequency bins, denote z[n] =[
zT [ln1

, ln1
], zT [ln2

, ln2
], zT [ln1

, ln2
]
]T

. With a search grid of
Kg potential incident angles θg,1, · · · , θg,Kg , we construct

Ãg[ln1 , ln1 ] =
[
ã(ln1 , ln1 , θg,1), . . . , ã(ln1 , ln1 , θg,Kg )

]
,

Ãg[ln2 , ln2 ] =
[
ã(ln2 , ln2 , θg,1), . . . , ã(ln2 , ln2 , θg,Kg )

]
,

Ãg[ln1 , ln2 ] =
[
ã(ln1 , ln2 , θg,1), . . . , ã(ln1 , ln2 , θg,Kg )

]
,

and then a block diagonal matrix can be generated as

Ãg[n] = blkdiag
{
Ãg[ln1 , ln1 ], Ãg[ln2 , ln2 ], Ãg[ln1 , ln2 ]

}
.

(20)

We also construct a Kg × 3 matrix S̃g[n] with S̃g[n] =[
s̃[ln1

, ln1
], s̃[ln2

, ln2
], s̃[ln1

, ln2
]
]
. By applying group sparsity

concept, we can obtain the following virtual array model

z[n] = Ãg[n]̃sg[n] + Ĩw[n] , (21)
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where the 3M2 × 2 matrix Ĩ =
[
Ĩ1, Ĩ2

]
with the first

column vector Ĩ1 = [̃ITM ,0
T
M ,0

T
M ]T and the second column

vector Ĩ2 = [0TM , Ĩ
T
M ,0

T
M ]T , 0M represents a column vector

consisting of all zeros with the size of M2 × 1. In addition,
s̃g[n] = vec

{
S̃g[n]

}
is a 3Kg × 1 column vector by vector-

izing S̃g[n], and w[n] =
[
σ2
n[ln1 , ln1 ], σ2

n[ln2 , ln2 ]
]T

.
Equation (21) can be rewritten as

z[n] = Ã◦
g[n]̃s◦g[n] , (22)

where Ã◦
g[n] =

[
Ãg[n], Ĩ

]
and s̃◦g[n] =

[
s̃Tg [n],wT [n]

]T
.

We use the row vector sg,kg [n], 1 ≤ kg ≤ Kg , to represent
kg-th row of the matrix S̃g[n]. Then, we form a new Kg × 1
column vector ŝg[n] based on the l2 norm of sg,kg [n], 1 ≤
kg ≤ Kg , as given below

ŝg[n] =
[∥∥sg,1[n]

∥∥
2
,
∥∥sg,2[n]

∥∥
2
, . . . ,

∥∥sg,Kg [n]
∥∥

2

]T
, (23)

where ‖·‖2 denotes the l2 norm.
Then, our group-sparsity based DOA estimation method is

formulated as

min
s̃◦g[n]

‖ŝg[n]‖1

subject to
∥∥∥z[n]− Ã◦

g[n]̃s◦g[n]
∥∥∥

2
≤ ε ,

(24)

where ε is the allowable error bound and ‖·‖1 is the l1 norm.
Here w[n] can also be considered as a variable due to the
unknown noise powers, and the ŝg[n] represents the DOA
estimation results over the Kg search grids.

C. Wideband DOA estimation based on multiple frequency
pairs

To estimate the DOA across the full frequency range of
interest, we divide the frequency bins of interest into several
pairs, and the group sparsity concept is expanded to all pairs
for wideband DOA estimation due to the same spatial support.

Assume that all the frequency bins are divided into N pairs.
Three matrices, a block diagonal matrix B̃◦

g, a Kg×3N matrix
Rg, and a (3Kg + 2)N ×1 column vector r◦g, are constructed
using Ã◦

g[n], S̃g[n], and s̃◦g[n], expressed as

B̃◦
g = blkdiag

{
Ã◦

g[1], Ã◦
g[2], . . . , Ã◦

g[N ]
}
,

Rg =
[
S̃g[1], S̃g[2], . . . , S̃g[N ]

]
,

r◦g =
[
s̃◦Tg [1], s̃◦Tg [2], . . . , s̃◦Tg [N ]

]T
.

(25)

Then the wideband DOA estimation can be formulated as

min
r◦g

‖r̂g‖1

subject to
∥∥∥zg − B̃◦

gr
◦
g

∥∥∥
2
≤ ε ,

(26)

where, zg =
[
zT [1], zT [2], . . . , zT [N ]

]T
and

r̂g =
[∥∥rg,1∥∥2

,
∥∥rg,2∥∥2

, . . . ,
∥∥rg,Kg∥∥2

]T
, (27)

with the row vector rg,kg , 1 ≤ kg ≤ Kg representing the kg-th
row of the matrix Rg.

Fig. 2. RMSEs of estimated DOA versus input SNR.

In (24) and (26), the Kg elements of the column vectors
ŝg[n] and r̂g are the corresponding DOA estimation results
over Kg search grids. These two optimization problems can
be solved using CVX, a software package for specifying and
solving convex programs [20], [21].

IV. SIMULATION RESULTS

Consider an example of ULA with M = 10 sensors. To
show the results clearly and also simplify the selection of
frequency pairs, we choose fs

2 = 8
3B and T = 64Ts with

Ts = 1/fs. The initial frequency, initial time-offset, and initial
phase are set to be 0. Then the normalized frequencies of the
echo signals cover the range from 0 to 3

8π. The number of
signal samples in the time domain at each sensor is 320000,
and DFT of L = 64 points is applied. The number of
data blocks used for estimating covariance matrices at each
frequency bin is P = 5000, and there are Q = 12 frequency
bins in total with the set of indexes Φl = [1, 2, . . . , 12] in this
example. All the Q = 12 frequency bins are divided into 6
frequency pairs with 1 and 12, 2 and 11, 3 and 10, 4 and 9,
5 and 8, as well as 6 and 7. d is set with δ = 1. There are
40 far-field targets with incident angles uniformly distributed
between −60◦ and 60◦, and a search grid of Kg = 3601
incident angles is formed within the full angle range with a
step size of 0.05◦.

In the first set of simulations, we focus on accuracy com-
parison between the DOA estimation results based only on
one frequency pair and results based on multiple frequency
pairs. The allowable error bound ε is chosen to give the
best result for each method through trial-and-error in every
experiment. The root mean square error (RMSE) results are
shown in Fig. 2, where each point is based on an average of
the results obtained by 500 simulation runs. In this simulation,
the case with one frequency pair consists of the 5th and the 8th
frequency bins. It is clear that the method based on multiple
frequency pairs consistently outperforms the existing method
exploiting only one co-prime pair of frequencies by a big
margin.

For the second set of simulations, we give an example
with the same setting as in the first set except that now 60
targets are uniformly distributed between −60◦ and 60◦. The
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(a) Estimation results based on one frequency pair (the 5th and the 8th bins).

(b) Estimation results based on multiple frequency pairs.

Fig. 3. DOA estimation results obtained by the estimation methods based
on one frequency pair and multiple frequency pairs: the dotted lines represent
the actual incident angles of the echo signals, while the solid lines represent
the estimation results.

SNR is set to be 0 dB, and the results are shown in Fig. 3.
Clearly the method based only on one pair of frequencies fails
while accurate estimation results are obtained by our proposed
wideband method exploiting multiple frequency pairs. This is
because the same spatial distribution are shared by different
frequencies, and the information provided by all frequencies
of interest are fully utilized when jointly estimating the results
across multiple frequency pairs.

V. CONCLUSION

A wideband uniform linear array with the associated group-
sparsity based DOA estimation algorithm has been proposed
which is capable of estimating more sources than the number
of physical sensors. Towards this end, a linear frequency
modulated continuous wave is used as the transmitted signal
to ensure the required correlation property among different
frequencies. The received echo signals from multiple targets
are decomposed into different frequencies by DFT. These
frequency bins are divided into several pairs to increase the
number of DOFs based on the co-array concept in the spatio-
spectral domain. Group sparsity based signal reconstruction
method is employed to jointly estimate the DOA across
multiple frequency pairs. It has been shown that the proposed

design and the estimation method is much more accurate than
the one based on a single frequency pair. In essence, the
proposed method can still give an acceptable result, while the
latter fails.
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