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Intersymbol interference (ISI) and cochannel interference (CCI) are two primary sources of signal impairment in mobile commu-
nications. In order to suppress both ISI and CCI, space-time adaptive processing (STAP) has been shown to be effective in perform-
ing spatio-temporal equalization, leading to increased communication capacity as well as improved quality of service. The high
complexity and slow convergence, however, often impede practical STAP implementations. Several subband array structures have
been proposed as alternatives to STAP. These structures provide optimal or suboptimal steady-state performance with reduced
implementation complexity and improved convergence performance. The purpose of this paper is to investigate the steady-state
performance of subband arrays with centralized and localized feedback schemes, using different decimation rates. Analytical ex-
pressions of the minimum mean-square error (MMSE) performance are derived. The analysis assumes discrete Fourier transform
(DFT)-based subband arrays and considers both unconstrained and constrained weight adaptations.
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1. INTRODUCTION

The applications of wireless communications are rapidly ex-
panding from voice transmission to a wide class of mul-
timedia information. With such increasing needs, wireless
communication systems are developing toward higher-speed
digital wireless networks. The communication channels are
often frequency selective, as a result of long multipath de-
lays relative to the symbol period, causing intersymbol in-
terference (ISI). In many mobile communication systems,
where the frequency resource is reused, cochannel interfer-
ence (CCI) represents another source of channel distortion
and signal impairment. Therefore, ISI and CCI are two pri-
mary sources that limit the communication capacity and the
quality of services in mobile communications.

While adaptive arrays are effective for spatial process-
ing of CCI suppression; whereas adaptive equalizers are ef-
fective for temporal filtering for ISI reduction, neither of
them are effective when both the CCI and ISI are present.

The use of space-time adaptive processing (STAP) technol-
ogy is an effective way to perform spatio-temporal equal-
ization that mitigates the above two problems [1, 2]. Ob-
jectives are to increase the communication capacity and en-
hance the quality of services. A variety of algorithms have
been developed for the implementation of the STAP systems,
including those based on least-mean square (LMS), recur-
sive least squares (RLS), and sample matrix inversion (SMI).
The direct use of STAP system often involves high-dimension
space in the joint spatial and temporal domain. This, in turn,
brings a high complexity and slow convergence rate, render-
ing the STAP system unattractive. This shortcoming has mo-
tivated extensive research work for devising alternative im-
plementation [3, 4, 5, 6, 7, 8, 9]. Among those methods,
subband or frequency-domain arrays offer the amenability
of parallel implementation with reduced processing rates in
each subband [10, 11]. With appropriate power normal-
ization or data self-orthogonalization, subband arrays can
achieve improved convergence [12, 13, 14].
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The subband (including frequency-domain) adaptive ar-
rays can be classified, in terms of their feedback methods,
into two classes, namely, centralized feedback and local-
ized feedback. In [7], the partial feedback scheme was also
introduced as a generalization of the above schemes. For
the centralized feedback schemes, Compton has shown that
the frequency-domain array provides identical steady-state
performance of the corresponding STAP system [15]. Such
equivalence, however, is valid only for the undecimated (win-
dow sliding) cases. The use of decimation may provide sig-
nificant system complexity reduction in subband array im-
plementations. The analysis of the performance degradation
with the use of decimation has been recently considered by
Tran et al. [8] only for ISI without taking the CCI signals
into account. On the other hand, for the localized and par-
tial feedback schemes, low computations, parallel processing,
and faster convergence can be achieved at the cost of sub-
optimal steady-state performance [3, 7]. Although the inves-
tigation of localized subband arrays, according to Compton
[15], dated back to early 1970s [16], a detailed performance
analysis, to our knowledge, was not available until recently
[7, 8]. In [7], the performance of discrete Fourier transform
(DFT) filter bank-based subband arrays has been consid-
ered for the aforementioned three feedback schemes where
no decimation is applied. In [8], the performance of local-
ized feedback subband array is analyzed for the DFT-based
subband arrays in the absence of CCI users. The results of
[8] show that, in a frequency-selective multipath fading en-
vironment, the subband array performance depends on the
number of subbands, input signal-to-noise ratio (SNR), the
source directions-of-arrival (DOAs), and the multipath time
delays. In addition to the above literature, [3] provides var-
ious numerical comparison results between the centralized
and localized feedback schemes.

In this paper, we investigate the performance of DFT-
based subband arrays with different decimation rates. Both
unconstrained and constrained subband array structures are
considered. To consider the minimum mean-square error
(MMSE) performance, the reference signal is considered
to be available. The steady-state performances of subband
adaptive arrays with the centralized and localized feedback
schemes and different decimation rates are analyzed, and ex-
pressions for the MMSE are derived. It is shown that decima-
tion compromises the optimum performance for both cen-
tralized and localized feedback subband array schemes. The
convergence performance of different subband array struc-
tures is also investigated and compared.

It is worth noting that there is an extensive literature
in frequency-domain equalizations and echo-cancellation
methods using single-sensor receivers (see, e.g., [17, 18, 19,
20] and references therein). These methods provide a fun-
damental development in the theory of subband process-
ing. However, important differences exist between single-
and multi-sensor systems in both formulations and perfor-
mances. The inclusion of the spatial domain to subband sig-
nal processing affects both the processing structure and the
performances. Single-antenna receivers cannot deal with the
cancellation of CCIs. In addition, we specifically address the

problem of subband arrays with arbitrary decimation rates
for both centralized and localized feedback structures.

The rest of this paper is organized as follows. Section 2
introduces the signal model and reviews the analysis of STAP
performance. Section 3 considers the subband decomposi-
tion, and the aliasing issue with the use of decimation.
Section 4 formulates the subband arrays with both central-
ized and localized feedback schemes. The steady-state per-
formance of different subband array structures is analyzed
in Section 5. Section 6 compares the computational com-
plexity between the subband arrays and conventional STAP
systems. Section 7 considers the convergence performance
where data self-orthogonalization and the step-size selection
are addressed. Numerical examples are provided in Section 8
for illustration.

2. SPACE-TIME ADAPTIVE PROCESSING

2.1. Signal model

We consider a base station using an antenna array of N sen-
sors with P users. Without loss of generality, the user signal
of interest is denoted as s1(n). The signals from other users
as sp(n), p = 2, . . . ,P, form the CCIs to the signal of interest.
When frequency-selective channels are considered for each
user, the received data vector at the array is expressed as

x(t) = [x1(t), . . . , xN (t)
]T

=
P∑

p=1

∞∑
i=−∞

sp(i)hp(t − iT) + b(t),
(1)

where the superscript T denotes matrix or vector transpose,
sp(n) and hp(t) are the nth information symbol and the
channel response vector (including the pulse shaping) of the
pth user, respectively, and b(t) is the additive noise vector.

The data vector is sampled at t = nT + i∆, where T is the
symbol duration of the signal waveform and ∆ is the sam-
pling period. The integer ratio of J = T/∆ is referred to as
the oversampling factor. Then, the data vector takes the fol-
lowing discrete-time expression:

x(nT + i∆) =
P∑

p=1

∞∑
d=0

sp(n− d)hp(dT + i∆) + b(nT + i∆).

(2)

We make the following assumptions.
(A1) The time required for the received waveform as-

sociated with a given transmission path to propagate across
the array is much smaller than the inverse of the user signal
bandwidth.

(A2) The user signals sp(n), p = 1, 2, . . . ,P, are wide-
sense stationary (if sampled at the symbol rate, i.e., J = 1) or
cyclostationary (if sampled at fractionally spaced symbol cy-
cle, i.e., J > 1). These signals are independent and identically
distributed (i. i. d.) with E[sp(n)s∗p (n)] = 1, where E(·) de-
notes the statistical expectation operator and the superscript
∗ denotes the complex conjugate.
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(A3) All channels hp(t), p = 1, 2, . . . ,P, are linear time-
invariant, and of a finite duration within [0, (Dp + 1)T],
where Dp are nonnegative integers.

(A4) The noise vector b(n) is zero-mean and temporally
and spatially white with variance σ at each array sensor.

Under these assumptions, we can stack the J samples
within each symbol period resulting in the following NJ × 1
vector containing data received at the NJ virtual channels (or
extended channels):

x̃(n) =
[

xT[nT] xT[nT − ∆] · · · xT
[
nT − (J − 1)∆

]]T

=
P∑

p=1

Dp∑
d=0

sp(n− d)h̃p(d) + b̃(n),

(3)

where

h̃p(n)=
[

hT
p[nT] hT

p[nT − ∆] · · · hT
p

[
nT − (J − 1)∆

]]T
,

b̃(n) =
[

bT[nT] bT[nT − ∆] · · · bT[nT − (J − 1)∆
]]T

.

(4)

2.2. Space-time adaptive processing
When a JM-tap FIR filter is used at the output of each array
sensor, or equivalently, an M-tap FIR filter is used at each of
the NJ virtual channel, we obtain a MNJ×1 vector that con-
tains all the input values at the STAP system at time instant
n:

x(n) =
[

x̃T(n) x̃T(n− 1) · · · x̃T(n−M + 1)
]T

. (5)

Similarly, we define

b(n) =
[

b̃T(n) b̃T(n− 1) · · · b̃T(n−M + 1)
]T

,

sp(n) =
[
sp(n) sp(n− 1) · · · sp

(
n−M −Dp

)]T
,

Hp

=




h̃p(0) · · · h̃p
(
Dp
)

0 · · · · · · 0
0 h̃p(0) · · · h̃p

(
Dp
)

0 · · · 0
...

. . .
. . .

...
. . .

...
0 · · · · · · 0 h̃p(0) · · · h̃p

(
Dp
)


 .

(6)

Then, we represent all M symbol samples captured at the NJ
virtual channels of the STAP as

x(n) =
P∑

p=1

Hpsp(n) + b(n). (7)

Denote w∗ as the weight vector corresponding to x(n).
Then the output of the STAP becomes

y(n) = wHx(n), (8)

where the superscript H denotes Hermitian (conjugate trans-
pose) operation. When a training signal, which is an ideal

replica of s1(n), is available at the receiver, the optimum
weight vector under the MMSE criterion can be provided us-
ing the Wiener-Hopf solution:

wopt = R−1
o ro (9)

with

Ro = E
[

x(n)xH(n)
]
, ro = E

[
x(n)s∗1 (n− v)

]
, (10)

where v is a delay [21], which is chosen to minimize the fol-
lowing MMSE:

MMSE = E
∣∣s1(n− v)−wH

optx(n)
∣∣2 = 1− rH

o R−1
o ro. (11)

Substituting (7) in (10), and using assumption (A2), we have

ro = H1ev, (12)

where

ev =
[

0, . . . , 0︸ ︷︷ ︸
v

, 1, 0, . . . , 0
]T

, (13)

provided 0 < v < M+D1−1. That is, ro is the (v+1)th column
of H1 [22]. For example, choosing v = 0 or v = M + D1 − 1
yields only one effective weight for each virtual channel. The
optimum value of v usually occurs around (M + D1)/2 − 1,
but the actual result depends on the channel characteristics.

Typically, J is chosen as either one or two [23]. In addi-
tion, it can be shown [21] that, when the channels meet the
following conditions:

(1) H1 is full column rank,
(2) the columns of H1 are linearly independent of the

columns of Hp, p = 2, . . . ,P,

the selection of M and N satisfying

MNJ ≥ column rank{H} (14)

yields perfect equalization conditions in noise-free scenarios,
where H = [H1, . . . , HP]. When all Hp, p = 1, . . . ,P, are full
column rank, the above requirement is equivalent to

M ≥ 1
NJ − P

P∑
p=1

Dp,

NJ > P.

(15)

3. SUBBAND DECOMPOSITION

3.1. Subband decomposition and subband arrays

Subband decomposition and reconstruction of a signal are
performed by exploiting a set of analysis and synthesis fil-
ters. The analysis filters decompose a wideband signal into a
set of narrowband subband signal components [24]. Highly
decorrelated subband signals are often desired in subband
decomposition-based equalization problems to ensure faster
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convergence and reduce the performance loss in localized
feedback schemes [7, 21, 25, 26]. To achieve effective decor-
relation between subband signals, the analysis filters are re-
quired to be close to the ideal bandpass filters [5, 26, 27].
This necessitates the use of long analysis filters (i.e., filters
with long taps) and, therefore, is usually not desirable. Long
analysis filters not only imply a long time delay in the pro-
cess of subband decomposition and reconstruction of the
signals, but also apply a strict condition to the stationarity
of the channel. More importantly, for nonblind subband ar-
ray systems, long analysis filters yield ineffective use of the
training signals. For these reasons, we consider, in this pa-
per, DFT-based filter bank, where the transform matrix of the
analysis filters is square. We maintain that long analysis filters
remain useful in certain application scenarios such as blind
spatio-temporal equalization and echo-cancellation applica-
tions, where the training signal is not a problem.

Combining the subband signal processing and array pro-
cessing results in subband array processing. So far, sev-
eral subband arrays have been proposed for spatio-temporal
equalizations [3, 4, 5, 6, 7, 8, 9, 10, 12]. For DFT-based sub-
band arrays, the performance without decimation has been
discussed in [7], whereas the performance with decimation
is analyzed for CCI-free situations in [8]. In the latter, only
the maximum decimation is considered, that is, the decima-
tion rate is the same as the number of subband bins, resulting
in a blockwise subband array scheme.

In this paper, we deal with more general cases of DFT-
based subband arrays of arbitrary decimation rates L. That is,
for each set of data processed in the subband array process-
ing, L output data of y(n) are used. As a result, the process-
ing window slides every L symbols. It also implies that the
weights are updated every L symbols. The decimation rate
is chosen between one (i.e., no decimation) and the num-
ber of subband bins M (i.e., maximum decimation), namely,
1 ≤ L ≤M.

3.2. Consideration of decimation

One important issue to be considered in decimated subband
signal processing is the alias problem. For simplicity of no-
tation and explanation, we illustrate this problem by using a
convolution problem for only one of the array sensors.

In the time domain, the output at the ith-array sensor
amounts to the convolution of a data stream xi(n) and the
weight vector w̃i = [wi,1, . . . ,wi,Q]T. To study the effect of
decimation, we consider a block of input data expressed by a
vector x̃i(n) = [xi(n), . . . , xi(n−M+1)]T, whereM ≥ Q. Since
the weight vector is updated independently in each block,
we adopt the overlap-save method, rather than the overlap-
add method [17].1 Overlap-add method can also be used for
frequency-domain processing, but it requires special atten-
tion, since it adds up convolution results of different blocks
within which the weight vector may assume different values

1The concepts underlying the overlap-save and overlap-add methods are
given in [28, 29]. The use of these two methods in subband signal processing
is discussed in [17].

0 M − 1

x̃i(n)

0 Q − 1

w̃i

0 Q − 1 M − 1 M + Q − 1

x̃i(n)∗w̃i

0

Q − 1 M − 1

M −Q + 1

Q − 2

Q − 1

x̃i(n)∗w̃i

(Period M)

Figure 1: Illustration of alias problem (“∗” denotes the convolu-
tion operator).

[30]. Referring to Figure 1, the convolution of w̃i and x̃i(n)
yields a new vector of length M + Q − 1, of which, only
M−Q+ 1 samples (from the Qth sample to the Mth sample)
take full consideration of Q data inputs. The rest are incom-
plete, in the sense that the output samples do not use all Q
input data. In this case, zero-padded data are used instead.

When DFT-based filter banks are used to construct a sub-
band array, the data vector, along with the weight vector, is
transformed into the subband domain. After the data vector
and the weight vector are multiplied in the transform do-
main, the result is transformed back to the time domain by
using the inverse DFT (IDFT).

For the unconstrained subband array structure, the
length of both data and weight vectors is equal to the di-
mension of DFT. When we perform the convolution of the
M× 1 data vector and the M× 1 weight vector, the result is a
vector of length 2M−1. Therefore, when the M-point convo-
lution is obtained from the IDFT of the product of the DFTs
of the data and weight vectors, the first M − 1 samples are
contaminated by alias, and only the last sample is alias-free.
As a result, in order to avoid alias, the only choice is L = 1,
that is, no decimation is made, which is the case considered
in [7]. When L > 1, alias problem arises and performance
degradation occurs. For the centralized feedback scheme, the
alias is controlled such that the error over the L samples of
the output data is minimized.
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It is noticed that the weight vector can be constrained
such that, in each virtual channel, only the first Q values of its
time-domain equivalence are nonzero, where Q ≤ M. In the
constrained subband arrays, the lengths of data and weight
vectors as well as the dimension of DFT can be different.
With the use of an M-point DFT transform, the convolution
of M-tap data and Q-tap weights yields M − Q + 1 points
of alias-free output samples. That is, the decimation rate can
take the value L ≤M −Q + 1 without causing an alias prob-
lem. It is pointed out that the alias-free results are achieved at
the cost of reduced number of degrees of freedom from M to
Q, which, as we will show later, does not necessarily improve
the system performance.

4. SUBBAND ARRAYS

4.1. Formulation of subband array signals

In this section, we formulate the expression of a DFT-based
subband array with M subbands and a decimation factor of
L. Let the subband decomposition divide the M samples of
data sequence at the output of the ith virtual channel,

x̃i(n) = [xi(n), . . . , xi(n−M + 1)
]T

, (16)

into M subbands, that is, to form the vector

x̃T ,i(n) =
[
x(1)
i (n), . . . , x(M)

i (n)
]T

, (17)

where i = 1, . . . ,NJ , and the superscript (m) denotes the data
component at the mth subband. x̃i(n) and x̃T ,i(n) are related
by the following equation:

x̃T ,i(n) =
[
x(1)
T ,i(n), x(2)

T ,i(n), . . . , x(M)
T ,i (n)

]T = Tox̃i(n), (18)

where To is the M × M DFT matrix with its (i, k)th ele-
ment being [To]i,k = (1/

√
M)W (i−1)(k−1)

M , i, k = 1, . . . ,M, and
WM = exp(− j2π/M). It is noted that To is unitary and sym-
metric, that is, ToTH

o = TH
o To = IM and TT

o = To, where IM is
the M ×M identity matrix. Then, the NJ × 1 data vector at
the mth subband is obtained as

x(m)
T (n) =

[
x(m)
T ,1 (n), x(m)

T ,2 (n), . . . , x(m)
T ,NJ(n)

]T

=




xT
1 (n)

xT
2 (n)

...

xT
NJ(n)







W0
M

Wm−1
M

...

W (m−1)(M−1)
M



.

(19)

By defining

xT(n) =
[(

x(1)
T (n)

)T
, . . . ,

(
x(M)
T (n)

)T
]T

(20)

as the MNJ × 1 signal vector for all the M subbands in the
subband array, we can relate xT(n) and x(n), defined in (5),
by

xT(n) = Tx(n), (21)

where the transform matrix T is expressed in the form

T = To ⊗ INJ (22)

and ⊗ denotes the Kronecker product operator. It is easy to
confirm that T is also unitary, that is, TTH = THT = IMNJ .

4.2. Adaptive subband arrays

Denote by (w(m)
T )∗ the NJ×1 weight vector to the signal vec-

tor x(m)
T (n) at the mth subband, and by w∗T = [(w(1)

T )T, . . . ,

(w(M)
T )T]H the MNJ × 1 weight vector to the entire subband

signal vector xT(n). The subband output is obtained as the
following M × 1 vector:

ỹT(n) =




(
w(1)
T

)H
x(1)
T (n)

...(
w(M)
T

)H
x(M)
T (n)


 = XT

T(n)w∗T , (23)

where

XT(n) =




x(1)
T (n) O

. . .

O x(M)
T (n)


 (24)

is an MNJ ×M matrix. The time-domain output is the last
L interested samples out of the M samples of the IDFT of
ỹT(n), expressed as

ỹ(n) = ULT−1
o ỹT(n) = ULT−1

o XT
T(n)w∗T = XT(n)w∗T , (25)

where

UL =
[

O(M−L)×(M−L) O(M−L)×L
OL×(M−L) IL

]
(26)

is an M ×M mask matrix with Oa×b denoting the a× b zero
matrix, and the MNJ ×M matrix

X(n) = XT(n)T−1
o UL (27)

is defined for notational convenience. Note in (25) that ỹ(n)
has only L nonzero elements and the results of other M − L
symbols of the block are evaluated at other blocks.
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Unconstrained subband arrays

We first consider the unconstrained subband array structure.
To help the derivation, we consider the following weight up-
date equation based on the LMS algorithm:

wT ←− wT + µXT(n)ẽ∗T (n), (28)

where µ is a scalar representing the step size,2 and ẽT(n) is
the M × 1 error signal vector at the transform domain. As
we discuss below, the error signal vector is different for the
two different feedback schemes. To avoid confusion, nota-
tions ẽT ,CF(n) and ẽT ,LF(n) will be used to specify the cen-
tralized and localized feedback schemes, respectively, for the
error vector in the transform domain ẽT(n).

In the centralized feedback scheme, for each block of sub-
band array processing, the error between the reference signal
and the subband array output is minimized in the time do-
main over L samples, that is, 3

ẽ(n) = ULs̃1(n− v)−ULT−1
o ỹT(n)

= UL
[

s̃1(n− v)− T−1
o XT

T(n)w∗T
]

= ULs̃1(n− v)−XT(n)w∗T .

(29)

The corresponding error vector at the subband domain
ẽT ,CF(n) is the DFT of the time-domain error and is expressed
as

ẽT ,CF(n) = Toẽ(n) = ToUL
[

s̃1(n− v)− T−1
o XT

T(n)w∗T
]
, (30)

where

s̃1(n) =
[
s1(n + M − L) · · · s1(n) · · · s1(n− L + 1)

]T

(31)

is a block of M symbol values of the reference signal.
On the other hand, for the localized feedback scheme,

the error between the reference signal and the subband ar-
ray output is minimized independently at each subband. The
error signal vector ẽT(n) becomes

ẽT ,LF(n) = s̃T(n− v)− ỹT(n)

= Tos̃1(n− v)−XT
T(n)w∗T .

(32)

By comparing (30) and (32), it is evident that, while
the centralized feedback scheme minimizes the error over
the L samples, the localized feedback scheme minimizes the
error at all the M samples independent of the decimation
rate. In particular, when L = M, that is, the subband ar-
ray is maximally decimated, UL = IM and, subsequently,
ẽT ,CF(n) = ẽT ,LF(n). Therefore, the centralized and localized
feedback schemes have the identical performance when the
subband arrays are maximally decimated.

2The selection of step size is discussed in Section 7.
3It is noted that, although the same notation is used for the STAP system

and different subband array schemes, the optimum value of v could differ in
different implementations, even under the same signal environment.

Constrained subband arrays

For constrained subband arrays, the weight vector is updated
according to

wT ←− wT + µFXT(n)ẽ∗T (n), (33)

where

F = (ToUQT−1
o

)⊗ INJ = TUQNJT−1 (34)

is used to convert the transform-domain information into
the time domain, mask the weights to only Q nonzero values
(L = M − Q + 1), and then convert the results back to the
transform domain, with

UQ =
[

IQ OQ×(M−Q)

O(M−Q)×Q O(M−Q)×(M−Q)

]
,

UQNJ =
[

IQNJ OQNJ×(M−Q)NJ

O(M−Q)NJ×QNJ O(M−Q)NJ×(M−Q)NJ

]
.

(35)

It is clear that, under the same DFT transform dimensional-
ity, the constrained subband array algorithm achieves alias-
free convolution at the cost of sacrificing the degrees-of-
freedom of the independently controllable weights.

For the constrained subband array structure, (29)–(32)
remain valid with the understanding that not every element
of wT can be independently optimized.

5. STEADY-STATE PERFORMANCE ANALYSIS

This section derives the expressions of the steady-state
MMSE performance. The performance of the unconstrained
subband array structure is derived in Section 5.1, whereas,
that of the constrained structure is derived in Section 5.2.

5.1. Unconstrained subband arrays

We first consider the performance of the centralized feedback
subband arrays. From (28) and the orthogonality principle,
E[XT(n)ẽ∗T ,CF(n)] = 0 at the steady state. Note that TH

o = T−1
o

and TT
o = To, and therefore,

E
[

XT(n)ẽ∗T ,CF(n)
]

= E
[

XT(n)T∗o UL
(

s̃∗1 (n− v)− (T−1
o

)∗
XH
T (n)wT

)]
=ME

[
X(n)s̃∗1 (n− v)−X(n)XH(n)wT

]
=M

(
r− RwT

) = 0,
(36)

where

R = E
[

X(n)XH(n)
]
,

r = E
[

X(n)s̃∗1 (n− v)
]
.

(37)
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The optimum weight vector is the Wiener-Hopf solution

wT ,CF,opt = R−1r. (38)

Using the above equation and (29), it is straightforward to
obtain the MMSE of the time-domain output error:

MMSECF = 1
L
E
[

ẽH(n)ẽ(n)
]

= 1
L
E
[

s̃H
1 (n)ULs̃1(n)− rHR−1r

]
= 1− 1

L
rHR−1r.

(39)

Similarly, for the localized feedback scheme,

E
[

XT(n)ẽ∗T ,LF(n)
]

= E
[

XT(n)T∗o s̃∗1 (n− v)−XT(n)XH
T (n)wT

]
= rT − RTwT = 0,

(40)

where

RT = E
[

XT(n)XH
T (n)

]
,

rT = E
[

XT(n)T∗o s̃∗1 (n− v)
]
.

(41)

Therefore, the optimum weight vector is

wT ,LF,opt = R−1
T rT , (42)

and the corresponding MMSE is obtained as

MMSELF = 1
L
E
[

ẽH(n)ẽ(n)
]

= 1 +
1
L

[
rH
T R−1

T RR−1
T rT − 2Re

(
rH
T R−1

T r
)]

,
(43)

where Re(·) denotes the real-part operator.
It can be shown that, when L = 1, that is, when there

is no decimation, the MMSE of a centralized feedback sub-
band array is the same as the MMSE of the corresponding
STAP system [7, 15]. Compared with a subband array using
the centralized feedback scheme, a subband array with the lo-
calized feedback scheme provides inferior performance when
L < M, and the performance of the two feedback schemes be-
comes identical when L = M. In this case, RT = R, rT = r,
and (39) is identical to (43).

5.2. Constrained subband arrays

To derive the steady-state performance of the constrained
subband arrays, we premultiply (33) by T−1. Using expres-
sion (34), we obtain the following weight update equation in
the time-domain equivalence:

T−1wT ←− T−1wT + µUQNJT−1XT(n)ẽ∗T (n). (44)

Define

X(n) =


x̃(n) x̃(n−M + 1) · · · x̃(n− 2) x̃(n− 1)

x̃(n− 1) x̃(n) · · · x̃(n− 3) x̃(n− 2)
...

...
. . .

...
...

x̃(n−M + 2) x̃(n−M + 3) · · · x̃(n) x̃(n−M+1)

x̃(n−M + 1) x̃(n−M + 2) · · · x̃(n− 1) x̃(n)



.

(45)

It can be shown that [31]

XT(n) = 1√
M

TX(n)T−1
o . (46)

Substituting (46) in (44) yields

T−1wT ←− T−1wT +
µ√
M

UQNJX(n)T−1
o ẽ∗T (n)

= T−1wT +
µ√
M

XQ(n)T−1
o ẽ∗T (n),

(47)

where XQ(n) = UQNJX(n). The upper QNJ×M elements of
XQ(n) are equal to those of X(n), whereas, the other matrix
elements are zero. From (47), it is clear that, at the steady
state,

E
[
XQ(n)T−1

o ẽ∗T (n)
] = 0 (48)

is satisfied.
Denote by w̃T the weight vector before the constraints,

that is, wT = Fw̃T . For the centralized feedback scheme,
we obtain

E
[
XQ(n)T−1

o ẽ∗T (n)
]

= E
{

UQNJX(n)T−1
o T∗o UL

[
s̃1(n− v)− T−1

o XT
T(n)w∗T

]∗}
= √ME

[
G(n)ULs̃∗1 (n− v)−G(n)ULGH(n)T−1w̃T

]
= √M[rQ − RQT−1w̃T

] = 0,
(49)

where

G(n) = UQNJT−1XT(n)T−1
o ,

RQ = E
[

G(n)ULGH(n)
]
,

rQ = E
[

G(n)ULs̃∗1 (n− v)
]
.

(50)

Notice that RQ is of rankQNJ and, therefore, is rank deficient
if Q < M. We define the following matrix pseudoinversion:

R#
Q =

QNJ∑
i=1

λ−1
i uiuH

i , (51)

where λi, i = 1, . . . ,QNJ , are the QNJ nonzero eigenval-
ues of RQ, and ui are the eigenvectors corresponding to λi.
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Then, the optimum weight vectors are obtained from (49) as

w̃T ,CF,opt = TR#
QrQ,

wT ,CF,opt = Fw̃T ,CF,opt = TUQNJR#
QrQ.

(52)

The error signal vector for constrained centralized feedback
subband arrays is given by

ẽ(n) = ULs̃1(n− v)−XT(n)w∗T

= ULs̃1(n− v)−XT(n)T∗UQNJ
(

R∗Q
)#

r∗Q

= ULs̃1(n− v)−ULGT(R∗Q
)#

r∗Q,

(53)

and the MMSE is given by

MMSECF = 1− 1
L

rH
QR#

QrQ. (54)

For the localized feedback scheme,

E
[
XQ(n)T−1

o e∗T (n)
]

= E
{

UQNJX(n)T−1
o

[
T∗o s̃1(n− v)−XT

T(n)w∗T
]∗}

= √ME
[

G(n)s̃∗1 (n− v)−G(n)GH(n)T−1w̃T
]

= √M[r′Q − R′QT−1w̃T
] = 0,

(55)

where

R′Q = E
[

G(n)GH(n)
]
,

r′Q = E
[

G(n)s̃∗1 (n− v)
]
.

(56)

The optimum weight vectors are obtained as

w̃T ,LF,opt = T
(

R′Q
)#

r′Q,

wT ,LF,opt = Fw̃T ,LF,opt = TUQNJ
(

R′Q
)#

r′Q,
(57)

where (R′Q)# is the pseudoinversion of R′Q, which is also of
rank QNJ . The error signal vector for constrained localized
feedback subband arrays is given by

ẽ(n) = ULs̃1(n− v)−XT(n)w∗T

= ULs̃1(n− v)−XT(n)T∗UQNJ
(

R′∗Q
)#

r′∗Q

= ULs̃1(n− v)−ULGT(R′∗Q
)#

r′∗Q .

(58)

The corresponding MMSE is obtained as

MMSELF

= 1 +
1
L

[
r′H
Q

(
R′Q
)#

RQ
(

R′Q
)#

r′Q − 2Re
(

rH
Q

(
R′Q
)#

r′Q
)]
.

(59)

When Q = M, a constrained subband array is equal to
its unconstrained counterpart. Similar to the unconstrained
subband array cases, it can be readily shown that, when L =
M, we have R′Q = RQ, r′Q = rQ, and (54) and (59) become
identical.

6. DMI IMPLEMENTATION AND
COMPUTATIONAL COSTS

In this section, we consider the computational costs when the
direct matrix inversion (DMI) implementation is applied.
We use the number of complex multiplication operations as
the measure of the computational cost. The unconstrained
subband array structures are considered below. Assuming
that the pseudomatrix inversion in (51) consumes roughly
the same amount of computations as those of matrix inver-
sion, the constrained structures require additional computa-
tions of 2NJ M-point FFT to perform the weight masking.

When the DMI algorithm is used, the weight vectors for
STAP and the centralized and localized feedback subband ar-
rays are computed using the Wiener-Hopf solutions given by
(9), (38), and (42), respectively, with the covariance matrices
and correlation vectors being replaced by the corresponding
estimates obtained from a block of data samples [32]. The
dimension of all covariance matrices is MNJ ×MNJ .

We focus on the computational costs of computing the
weight vector from the Wiener-Hopf solutions, and that for
the DFT/IDFT operations required for the subband arrays.
The Wiener-Hopf solution is equivalent to the Yule-Walker
equation with a general right-hand side. With some modifi-
cation to the Levison-Durbin recursions developed for Yule-
Walker equation, the computation of the weight vector from
the Wiener-Hopf solution, for a p×p covariance matrix case,
requires O(4p2) complex multiplications4 [34].

However, for the localized feedback subband array, the
covariance matrix RT is block diagonal. To illustrate the cor-
responding computational requirements, we consider in the
manner that the weight vector is updated at each subband in-

dependently. The weight vector w(m)
T ,LF,opt at the mth subband

is obtained from

w(m)
T ,LF,opt =

(
R(m)
T

)−1
r(m)
T , (60)

where

R(m)
T = E

[(
x(m)
T (n)

)H
x(m)
T (n)

]
(61)

is the NJ ×NJ covariance matrix of x(m)
T at the mth subband,

and

r(m)
T = E

[
x(m)
T (n)

(
s(m)(n)

)∗]
(62)

is the correlation vector between x(m)
T and the reference signal

s(m)(t) at the mth subband.
Therefore, for the subband array using the localized feed-

back scheme, the weight vector can be obtained from M par-
allel sets of dimension NJ ×NJ matrix problems.

4There are algorithms for solving such equations which require just
O(p log2(p)) operations. However, in a typical problem, the Levison-Durbin
recursion is still the faster method due to the fact that these new algorithms
require excessive codes [33].



Subband Array Implementations for Space-Time Processing 107

From the above discussion, it is clear that the compu-
tational cost of STAP system is O(4M2N2J2). For the cen-
tralized feedback subband array, the computational cost is
O(4M2N2J2) per L symbols, resulting in O(4M2N2J2/L)
flops per symbol. On the other hand, for the localized feed-
back subband array, the computational cost is O(4MN2J2)
per L symbols, resulting in O(4MN2J2/L) flops per sym-
bol. In particular, when L = M, the computational cost for
the centralized and localized feedback subband arrays are
O(4MN2J2) and O(4N2J2), respectively.

For subband arrays, one must consider the computa-
tional cost of DFT/IDFT transforms. For every L symbols,
NJ times of M-dimensional DFT transforms are required at
the subband signal decomposition, one time DFT is needed
for reference signal decomposition, and one time IDFT is
required for the signal synthesis at the subband array out-
put. Therefore, the computational cost becomes O((NJ +
2)(M/L) log2 M) = O((MNJ/L) log2 M) per symbol for both
subband array schemes. Therefore, the computational cost of
DFT/IDFT transforms is smaller than that of weight compu-
tations for the centralized feedback scheme, whereas for the
localized feedback scheme, it becomes smaller than that of
the weight computations only when log2 M < 4NJ , which is
often satisfied.

7. CONVERGENCE PERFORMANCE

In this section, we consider the convergence performance of
the subband arrays. The LMS algorithm is used. To take the
advantages of subband array processing for improved con-
vergence, we perform self-orthogonalization of the data sig-
nals in each subband independently after the subband de-
composition [6]. Because the number of the virtual chan-
nels (NJ) is usually much smaller than that of the total STAP
dimensions (MNJ), the additional computational cost of
eigendecomposition at each subband is considerably lower
than that of the whole-band subspace approach of subband
array or STAP systems [21]. Note that, while power nor-
malization is effective in improving the convergence perfor-
mance in single-antenna equalizers, the effect of power nor-
malization alone is not significant in subband arrays [6].

Consider the kth subband, and let R(k)
T denote the NJ ×

NJ covariance matrix of subband signal vector x(k)
T (n), and is

eigendecomposed as

R(k)
T = E

[
x(n)
T (t)

(
x(k)
T (n)

)H] = V(k)Λ(k)(V(k))H
. (63)

The new subband signal vector after the self-orthogonaliza-
tion is expressed as

x(k)
T (n)←− (Λ(k))−1/2(

V(k))H
x(k)
T (n). (64)

In practice, the covariance matrix R(k)
T can be approximated

using sample averaging or recursive update. Note that, while
such data self-orthogonalization makes the comparison

more obvious, it is common for all the subband array
schemes and does not favor any specific scheme in the con-
vergence performance comparison.

We first consider the unconstrained subband array using
the centralized feedback scheme. The mean of the weight er-
ror vector can be expressed as [32]

E
[

wT(l)−wT ,opt
] = [1− µRS

]l
E
[

wT(0)−wT ,opt
]
, (65)

where wT(l) denotes the subband-domain weight vector at
the lth iteration. From (28) and (30), the matrix RS is ob-
tained as follows:

(A) centralized, unconstrained:

RS = E
[

XT(n)T∗o UL
(

T∗o
)−1

XH
T (n)

]
. (66)

Therefore, the step size is chosen as

0 < µ = α

tr
(

RS
) < 2

tr
(

RS
) , (67)

where 0 < α < 2 is a constant and tr(·) denotes the matrix
trace. From (28) and (30)–(33), it is straightforward to derive
the matrix RS for other subband array schemes in the similar
manner as follows:

(B) localized, unconstrained:

RS = E
[

XT(n)XH
T (n)

]
; (68)

(C) centralized, constrained:

RS = E
[

FXT(n)T∗o UL
(

T∗o
)−1

XH
T (n)

]
; (69)

(D) localized, constrained:

RS = E
[

FXT(n)XH
T (n)

]
. (70)

For the unconstrained subband array with the localized
feedback scheme, the weights are updated independently at
each subband. In this case, the step-size parameter at the mth
subband can be chosen as

0 < µ(m) = α

tr
(

R(m)
S

) <
2

tr
(

R(m)
S

) , (71)

where
(E) localized, unconstrained:

R(m)
S = E

[
x(m)
T (n)

(
x(m)
T (n)

)H]
. (72)

In the underlying case, due to self-orthogonalization, it fol-

lows that tr(R(m)
S ) = (1/M)tr(RS) and, therefore, the step-size

parameter µ(m), obtained from (71), is M times larger than
µ obtained from (67). For constrained subband array with
localized feedback scheme, extensive computer simulations
have shown that the step-size parameter can be equally in-
creased, leading to faster convergence.
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Figure 2: MMSE versus the decimation rate: (a) M = 8 and (b) M = 16.

8. NUMERICAL EXAMPLES

8.1. Steady-state performance

A three-element linear array with half-wavelength interele-
ment spacing is considered. Two user signals are illuminating
the array. Each has a maximum delay spread of five symbols.
Six quasistatic multipath components are randomly gener-
ated for each user. The quasistatic channels are assumed to
remain constant over the processing period, and to change
over time as independent stationary stochastic processes. The
mean value of the input SNR is 20 dB for both signals. For
each user signal, the input signal power is defined as the total
power of all paths. The signals are sampled and processed at
the symbol rate (i.e., J = 1).

DMI-like methods are considered in the performance
evaluation. One hundred frequency-domain data samples
are used for weight and MMSE computations, and the results
are averaged over 100 independent trials.

Figure 2 shows the MMSE performance, where M takes
the values of 8 and 16, and L assumes a value between 1 and
M. For the constrained subband array structure, the num-
ber of nonzero weight elements is chosen as Q = M − L + 1
in each virtual channel. It is evident that the 16-subband ar-
ray provides lower MMSE than the 8-subband counterpart.
While the change shown in Figure 2 is not monotonic due
to limited data samples used in the simulations, we maintain
that the MMSE generally increases with L.

Among the four schemes of subband arrays, the re-
sults show that unconstrained subband array structures out-
perform the respective constrained counterparts, and the
centralized feedback scheme provides superior performance
compared to the localized feedback scheme. As a result,
when the same values of M and L are considered, the un-

constrained centralized feedback scheme achieves the best
performance, whereas, the constrained localized feedback
scheme provides the worst performance.

It is clear from the numerical results that, unlike other
structures, the performance of the unconstrained subband
arrays with the localized feedback scheme does not change
significantly with respect to the decimation rate. This is be-
cause the weights are optimized in the frequency domain
and, therefore, the subband array does not favor any time-
domain samples in a subband block. For the constrained
subband arrays, the MSE becomes large as the decima-
tion rate increases, because the number of nonzero weights
Q = M − L + 1 decreases as the decimation rate L in-
creases.

While the decimation compromises the subband array
performance, it is however noted, that the use of decimation
often greatly reduces the signal processing rate and compu-
tational costs. The localized feedback scheme can further re-
duce the implementation complexity and it is amenable to
parallel implementations. Therefore, the subband arrays in
general provide flexible system designs, where performance
may be traded off with the system complexity. Subband ar-
rays with decimation and localized feedback schemes may,
therefore, provide improved performance to the STAP sys-
tem with the same computational costs.

8.2. Convergence performance

Next, we present the convergence performance of the sub-
band arrays. Comparison between different subband array
schemes are made and the effect of decimation rates are in-
vestigated. The array and signal parameters are the same as
those used in steady-state performance computations. In all
the simulations, α = 0.4 is used and the initial values of all
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Figure 3: Comparison of the convergence performance for different subband array schemes. (a) Effect of self-orthogonalization (centralized,
M = 16, L = 1). (b) Convergence performance (M = 16, L = 1). (c) Convergence performance with respect to symbols (M = 16, L = 4).
(d) Convergence performance with respect to iterations (centralized, unconstrained, M = 16).

weights are set to zero. In addition, the MSE is obtained by
averaging the results of 100 independent trials.

We first show the effect of data self-orthogonalization
at each subband. The subband array with centralized feed-
back scheme is used as the example, and the localized feed-
back scheme is demonstrated in a similar manner. Figure 3a
compares the convergence performance with and without
data self-orthogonalization, where the number of subbands
is M = 16 and no decimation is applied (L = 1).

Note that, when no decimation is made, the constrained and
unconstrained subband array schemes are identical. The con-
ventional performance of a STAP system is the same as that
of the subband array with no decimation and no data self-
orthogonalization. At the expense of eigendecompositions
and multiplication of sixteen 3×3 matrices, the improvement
of convergence performance using the self-orthogonalization
is evident. In the rest of simulations, self-orthogonalized data
are used.
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Figure 3b shows the convergence performance of the sub-
band arrays where no decimation is applied (L = 1). The
constrained and unconstrained subband array schemes are
identical. For the localized feedback subband array, if the se-
lection of the step-size parameter µ is guided by (67) (shown
as “localized I” in the figure), the convergence performance
becomes similar to that of the centralized subband array. On
the other hand, when the step-size parameter Mµ is used
for the localized feedback scheme (shown as “localized II”),
the convergence becomes faster than the centralized coun-
terpart, at the expense of larger residual error. Note that the
centralized feedback subband array diverges when the step
size is set equal to Mµ.

In Figure 3c, the convergence is compared for different
subband array schemes for L = 4. Step size µ is used for both
centralized feedback schemes, whereas Mµ is used for the lo-
calized feedback schemes. It is clear that, because of the re-
duction of the degrees of freedom, the constrained feedback
schemes provide slightly faster convergence.

Comparing Figures 3b and 3c, it is evident that the dec-
imating of the data results in slower convergence. The pri-
mary reason behind this is that, in a decimated array, the
weights are updated only every L samples. In Figure 3d, the
convergence performance is compared in terms of the num-
ber of iterations, and the convergence for different decima-
tion rates (L = 1, 4, and 8) are comparable.

9. CONCLUSIONS

We have investigated the MMSE performance of subband ar-
rays with arbitrary decimation rates for unconstrained and
constrained subband array structures. Both the centralized
and localized feedback schemes were considered. Among the
four combination schemes of subband arrays, the results
showed that when the same number of array and subbands
are used, the unconstrained subband array structures outper-
form the constrained counterparts, and the centralized feed-
back scheme provides superior performance compared to the
localized feedback scheme.
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