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Spatial time-frequency distributions (STFDs) have been recently intro-
duced as the natural means to deal with source signals that are localiz-
able in the time-frequency domain. It has been shown that improved esti-
mates of the signal and noise subspaces are achieved by constructing the
subspaces from the time-frequency signatures of the signal arrivals rather
than from the data covariance matrices, which are commonly used in con-
ventional subspace estimation methods. This paper discusses the applica-
tion of STFD to high-resolution direction finding. We focus on both the
role and the effect of crossterms in angle estimation when multiple time-
frequency points are incorporated. Simulation examples are presented to
compare the performance of joint block-diagonalization and time-frequency
averaging techniques for incorporating multiple autoterm and crossterm
points in subspace estimation.  2000 Academic Press

Key Words: spatial time-frequency distribution; direction finding; cross-
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1. INTRODUCTION

In many signal processing applications, the multidimensional signal is
directly utilized to estimate some signal parameters, such as the number of
sources and their directions of arrival [1, 2]. Subspace-based methods use a
geometrical relation involving the exact moments of the data. The desired
signal parameters are extracted by solving this relation in some approximate
sense and by using sample moments instead of the exact ones. The commonly
applied eigenstructure subspace methods assume stationary signals. When the
frequency content of the measured data is time-varying, the performance of
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these methods can be significantly improved by proper use of the data time-
frequency characteristics.

The evaluation of quadratic time-frequency distributions of the data snap-
shots across the array yields spatial time-frequency distributions (STFDs) which
are most appropriate to handle sources of nonstationary waveforms that are
highly localized in the time-frequency domain [3, 4, 9]. Spreading the noise
power while localizing the source energy in the time-frequency domain amounts
to increasing the robustness of eigenstructure signal and noise subspace esti-
mation methods with respect to channel and receiver noise and hence improves
resolution and signal separation performance.

In this paper, we consider the applications of spatial time-frequency distrib-
utions to the direction finding problem. In [4], the time-frequency MUSIC (t-f
MUSIC) was introduced. In [9], the subspace analysis for the time-frequency
distribution matrices is presented, and the performance of the time-frequency
MUSIC is analyzed. The time-frequency maximum likelihood (t-f ML) for direc-
tion finding has also been introduced and analyzed [8]. However, these results
were obtained under the assumption that only the autoterms of STFDs are con-
sidered for STFD matrix construction. The effect of crossterms on direction-of-
arrival (DOA) estimations has not been made clear. In this paper, we focus on
the performance of the t-f MUSIC when crossterms are incorporated. The main
contribution of this paper is not based on improved distinction between auto-
and crossterms but rather we examine the effect on performance when each or
both of these terms are allowed to take part in matrix and STFD problem for-
mulation. For the cases where it is difficult to discriminate between distribution
terms, then it is likely that both auto- and crossterms will be considered, which
is a case discussed and simulated in this paper.

This paper is organized as follows. Section 2 introduces the signal model and
gives a brief review of the definition and properties of the spatial time-frequency
distributions. In Section 3, the time-frequency MUSIC algorithm is briefly
discussed. In Section 4, we consider the effect of crossterms to direction finding.
Simulation examples are presented to examine the effect of crossterms, and
a comparison between joint block-diagonalization and time-frequency averaging
is performed.

2. SPATIAL TIME-FREQUENCY DISTRIBUTIONS

2.1. Signal Model

In narrowband array processing, when n signals arrive at an m-element array,
the linear data model

x(t)= y(t)+n(t)=Ad(t)+n(t) (1)

is commonly used, where A is the mixing matrix of dimension m × n, x(t) =
[x1(t), . . . , xm(t)]T is the sensor array output vector, and d(t)= [d1(t), . . . , dn(t)]T
is the source signal vector. The superscript T denotes the transpose operator. In



Amin and Zhang: Spatial Time-Frequency Distribution Matrices 327

direction finding problems, the DOAs of the source signals 2= [θ1, . . . , θn]T are
of interest, and the mixing matrix takes the form of A(2) = [a(θ1), . . . ,a(θn)],
where a(θi) is the ith steering vector with known structure. On the other
hand, in blind source separation application, it is often assumed that the array
manifold is unknown and the mixing matrix is not finitely parameterized. n(t) is
an additive noise vector whose elements are modeled as stationary, spatially
and temporally white, zero-mean complex random processes, independent of the
source signals. That is,

E[n(t + τ )nH(t)] = σδ(τ )I and E[n(t + τ )nT (t)] = 0 for any τ, (2)

where δ(τ ) is the Dirac delta function, I denotes the identity matrix, σ is the
noise power at each sensor, the superscript H denotes conjugate transpose, and
E(·) is the statistical expectation operator.

In Eq. (1), it is assumed that the number of sensors is higher than the number
of sources, i.e., m> n. Further, matrix A is full column rank, which implies that
the steering vectors corresponding to n different angles of arrival are linearly
independent. The spatial correlation matrix is given by

Rxx =E[x(t)xH(t)] =ARddAH + σI, (3)

where Rdd =E[d(t)dH (t)] is the signal correlation matrix. We assume that Rxx
is nonsingular and the observation period consists of N snapshots with N >m.

2.2. Spatial Time-Frequency Distributions
The STFDs based on Cohen’s class of time-frequency distribution were

introduced in [3]. The discrete form of Cohen’s class of time-frequency
distribution of a signal x(t) is given by [5]

Dxx(t, f )=
∞∑

k=−∞

∞∑
τ=−∞

φ(k, τ )x(t + k + τ )x∗(t + k − τ )e−j4πf τ , (4)

where φ(k, τ ) is the time-frequency kernel and the superscript ∗ denotes
complex conjugate. The spatial time-frequency distribution matrix is obtained
by replacing x(t) by the data snapshot vector x(t),

Dxx(t, f )=
∞∑

k=−∞

∞∑
τ=−∞

φ(k, τ )x(t + k + τ )xH(t + k − τ )e−j4πf τ . (5)

Substituting (1) into (5), we can extend Dxx to the following form,

Dxx(t, f )=Dyy(t, f )+Dyn(t, f )+Dny(t, f )+Dnn(t, f ). (6)

Under the uncorrelated signal and noise assumption and the zero-mean noise
property, it is obvious that E[Dyn(t, f )] =E[Dny(t, f )] = 0, and it follows

E[Dxx(t, f )] =Dyy(t, f )+E[Dnn(t, f )] =ADdd(t, f )AH +E[Dnn(t, f )]. (7)
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Equation (7) is similar to Eq. (3) which has been commonly used in DOA
estimation and blind source separation problems, relating the signal correlation
matrix to the data spatial correlation matrix. In the above formulation, however,
the correlation matrices are replaced by the spatial time-frequency distribution
matrices. This implies that key problems in various applications of array
processing, specifically those dealing with nonstationary signal environments,
can be approached using bilinear transformations.

It is noted that the relationship (7) holds true for every (t, f ) point. In order to
reduce the effect of noise and ensure the full column rank property of the STFD
matrix, we consider multiple time-frequency points. Joint block-diagonalization
[6, 13] and time-frequency averaging [7, 9] represent the two approaches that
have been used for this purpose.

The aforementioned fact of incorporating multiple time-frequency points
permits the selection of specific time-frequency regions and as such perform
array processing for a subclass of signals. For example, consider the two sources
A and B to be incident on a multisensor array. As shown in Fig. 1, we assume
that source A occupies the time-frequency region Ra , where source B occupies
the time-frequency region Rb. The time-frequency signatures of the two sources
overlap, but each source still has a time-frequency region that is not intruded
over by the other source. Therefore, when we select (t, f ) points of the region
Ra ∩ Rb, only signal A will be involved. The performance improvement is
specially significant for closely spaced signals [10].

When no source signals are selected out of the n signals based on their time-
frequency signatures, (7) becomes

E[Dxx(t, f )] =AoDo
dd(t, f )(A

o)H +E[Dnn(t, f )], (8)

where Ao and Do
dd(t, f ), respectively, denote the mixing matrix and the source

signal TFD matrix defined using the selected no signals.
It is important to note that with the ability to construct the STFD matrix from

one or few signal arrivals, the well-known m> n condition on source localization
using arrays can be relaxed to m> no. That is to say, we can perform direction

FIG. 1. Signals with different time-frequency signatures.
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finding or source separation with the number of array sensors smaller than the
number of impinging signals.

2.3. Properties

Below, we focus on frequency modulation (FM) signals, modeled as

d(t)= [d1(t), . . . , dn(t)]T = [D1e
jψ1(t), . . . ,Dne

jψn(t)]T , (9)

where Di and ψi(t) are the fixed amplitude and time-varying phase of the ith
source signal. For each sampling time t , di(t) has an instantaneous frequency
(IF) fi(t)= dψi(t)/(2π dt).

The consideration of FM signals is motivated by their simplicity as well as
the fact that these signals are uniquely characterized by their instantaneous
frequencies, and therefore, they have clear time-frequency signatures that can
be utilized by the STFD approach.

Consider a simple case in which the FM signals are mutually uncorrelated
over the observation period and their respective time-frequency signatures do
not overlap, i.e.,

1
N

N∑
k=1

di(k)d
∗
j (k)= 0 for i 6= j, i, j = 1, . . . , n, (10)

then the signal correlation matrix in (3) is

Rdd = diag[D2
1,D

2
2, . . . ,D

2
n],

where diag[·] is the diagonal matrix formed with the elements of its vector
valued arguments.

We consider pseudo Wigner–Ville distribution (PWVD) as an example of
Cohen’s class here. The spatial pseudo-Wigner–Ville distribution (SPWVD)
matrix, using a rectangular window of odd length L, is

Dxx(t, f )=
(L−1)/2∑

τ=−(L−1)/2

x(t + τ )xH(t − τ )e−j4πf τ . (11)

Assuming that the third-order derivative of the phase is negligible over the
window length L, then along the true time-frequency points of the ith signal,
fi(t)= dψi(t)/(2π dt), and ψi(t + τ )−ψi(t − τ )− 4πfiτ = 0. Accordingly, the ith
diagonal element of PWVD matrix Ddd(t, f ) becomes

Ddidi (t, fi)=
(L−1)/2∑

τ=−(L−1)/2

D2
i = LD2

i . (12)
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On the other hand, under the spatial white and temporal white assumptions,
the statistical expectation of the noise STFD matrix Dnn(t, f ) is

E[Dnn(t, f )] =
(L−1)/2∑

τ=−(L−1)/2

E[n(t + τ )nH(t − τ )]e−j4πf τ = σI. (13)

Therefore, when selecting the time-frequency points along the time-frequency
signature or the IF of an FM signal, the SNR of model (7) is LD2

i /σ , which has
an improved factor L over the one associated with model (3).

The PWVD of each FM source has a constant value over the observation
period, providing that we leave out the rising and falling power distributions
at both ends of the data record. For convenience of analysis, we select those
N − L+ 1 time-frequency points of constant distribution value for each source
signal. Therefore, the averaged STFD over the time-frequency signatures of no
sources, i.e., a total of no(N −L+ 1) time-frequency points, is given by

D̂= 1
no(N −L+ 1)

no∑
q=1

N−L+1∑
i=1

Dxx(ti, fq,i ), (14)

where fq,i is the instantaneous frequency of the qth signal at the ith time
sample. The expectation of the averaged STFD matrix is

D=E[D̂] = L

no
AoRo

dd(A
o)H + σI, (15)

where Ro
dd represents the signal correlation matrix formulated by only consid-

ering no signals out of the total number of signal arrivals n.
Let λo1 > λ

o
2 > · · ·> λono > λono+1 = λono+2 = · · · = λom = σ denote the eigenvalues

of the correlation matrix defined from a data record of a mixture of the no

selected FM signals, Ro
xx = AoRo

dd(A
o)H + σI. We also denote λtf1 > λ

tf

2 > · · · >
λ
tf
no > λ

tf

no+1 = λtfno+2 = · · · = λtfm = σ tf as the eigenvalues of D defined in (15).
From (15), we have

λ
tf
i =


L

no
(λoi − σ)+ σ =

L

no
λ̃oi + σ i ≤ no

σ tf = σ no < i ≤m,
(16)

where λ̃oi , λoi − σ .

3. TIME-FREQUENCY MUSIC

When no signals are selected, the t-f MUSIC determines the angles of the no
signals by locating the no peaks of the spatial spectrum defined from the no
signals’ respective time-frequency regions [4].

f
tf
MU(θ)=

[
aH(θ)Ĝtf (Ĝtf )Ha(θ)

]−1 = [aH (θ)(I− Ŝtf (Ŝtf )H
)
a(θ)

]−1 (17)
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where Gtf and Stf are the noise and signal subspace estimates obtained from the
eigenstructure of matrix D. When N −L+1 points for each of the no FM signals
are used in the time-frequency averaging, the variance of the DOA estimates
based on t-f MUSIC is given by [9]

E
(
ω̂
tf
i −ωi

)2 = 1
2(N −L+ 1)

aH (θi)Utfa(θi)
htf (θi)

, (18)

where ωi is the spatial frequency associated to DOA θi and ω̂tfi is its estimate
obtained by the t-f MUSIC. Moreover,

Utf = σL

no(N −L+ 1)

[
no∑
k=1

λ
tf
k

(σ − λtfk )2
stfk
(
stfk
)H]

δi,j

= σ

N −L+ 1

[
no∑
k=1

λ̃ok + (no/L)σ
(λ̃ok)

2
sok(s

o
k)
H

]
δi,j (19)

and

htf (θ)= cH(θ)Gtf (Gtf )Hc(θ), (20)

with

c(θ)= da(θ)/dω. (21)

From (18) and (19), two important observations are in order. First, if the
signals are both localizable and separable in the time-frequency domain, then
the reduction of the number of signals from n to no greatly reduces the
estimation error, specifically when the signals are closely spaced. The second
observation relates to SNR enhancements. The above equations show that error
reductions using STFDs are more pronounced for the cases of low SNR and/or
closely spaced signals. It is clear from (19) that, when λok � σ for k = 1,2, . . . , no,
the results are almost independent of L (assume N � L so that N −L+ 1'N),
and therefore there would be no obvious improvement in using the STFD over
conventional array processing. On the other hand, when some of the eigenvalues
are close to σ (λok ' σ , for some k = 1,2, . . . , no), which is the case of weak or
closely spaced signals, all the results of above three equations are reduced by
a factor of up to G = L/no, respectively. This factor represents, in essence, the
gain achieved by using STFD processing. To numerically demonstrate the effect
of the SNR enhancement, Fig. 2 shows the following normalized factor that is
obtained using the kth term in the summation (19) and its respective value in
conventional MUSIC

ηk = L

no

λ
tf

k

(σ − λtfk )2
/

λok

(σ − λok)2
= λ̃

o
k + (no/L)σ
λ̃ok + σ

versus λ̃ok/σ for different gain factor G = L/no. This is a key factor in
determining the DOA variance of the t-f MUSIC estimates (18). It is evident
from this figure that the effect of the gain factor becomes significant at low
SNR.
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FIG. 2. Normalized factor ηk vs. λ̃ok/σ .

4. EFFECT OF CROSSTERM DISTRIBUTION

4.1. Crossterm Distribution

Crossterms are a by-product of the time-frequency distribution due to
its bilinearity. Although different kernels have different ways of mitigating
crossterms [14], nevertheless complete removal of crossterms is very difficult
to achieve.

There are two sources of crossterms in the underlying direction finding
problems. The first type is due to the interactions between the components
of the same source signal. These crossterms always reside, along with the
autoterms, on the main diagonal of the source TFD matrix. The other type
of crossterms is those generated from the interactions between two signal
components belonging to two different sources. These crossterms are associated
with cross-TFD of the source signals and, at any given time-frequency point,
they constitute the off-diagonal entries of the source TFD matrices.

Below, we consider the second type of crossterms. When crossterms are
present at the selected time-frequency point, the source TFD takes the following
general form,

Ddd(t, f )=


Dd1d1(t, f ) Dd1d2(t, f ) . . . Dd1dn(t, f )

Dd2d1(t, f ) Dd2d2(t, f ) . . . Dd2dn(t, f )

...
...

. . .
...

Ddnd1(t, f ) Ddnd2(t, f ) . . . Ddndn(t, f )

 , (22)
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where the off-diagonal element

Ddidj (t, f )=
∞∑

k=−∞

∞∑
τ=−∞

φ(k, τ )di(t + k + τ )d∗j (t + k − τ )e−j4πf τ

is the crossterm of source signals di(t) and dj (t) at the point (t, f ).

4.2. Comparison to Cross-Correlation

To understand the role of crossterms in direction finding, it is important to
compare the crossterms to the cross-correlation between signals in conventional
array processing, whose properties are familiar. When signals are correlated, the
correlation matrix of the source signals is given at the form

Rdd =


Rd1d1 Rd1d2 . . . Rd1dn

Rd2d1 Rd2d2 . . . Rd2dn

...
...

. . .
...

Rdnd1 Rdnd2 . . . Rdndn

 , (23)

where the off-diagonal element

Rdidj =E[di(t)d∗j (t)]

represents the correlation between source signals di and dj . Direction finding
problems can usually be solved when the signals are partially correlation;
however, full rank property of the covariance matrix Rdd is a necessary
condition.

Comparing Eqs. (22) and (23), it is clear that the cross-correlation terms
and the crossterms have analogous form and similar function. However, the
correlation matrix in (23) is defined for stationary signal environments, whereas
the matrix in (22) is defined at a (t, f ) point and its value usually varies with
respect to time t and frequency f under both stationary and nonstationary
signal conditions.

When multiple (t, f ) points are incorporated, the effect of a crossterm may be
reduced, since the crossterm usually oscillates with respect to time. In the next
subsection, we demonstrate this property by using simulation examples.

4.3. Examples

Consider a six-element linear array with half-wavelength interelement spac-
ing, and two chirp signals arrive. The start and end frequencies of the first signal
d1(t) are f1s = 0.1 and f1e = 0.5, and those for the second signal d2(t) are f2s = 0
and f2e = 0.4, respectively. The SNR is 10 dB for each signal, and the DOAs of
the two signals are θ1 =−5◦ and θ2 = 5◦, respectively. The number of samples is
N = 256. PWVD is used and the window length is L= 129. Figure 3 shows the
PWVD of the mixed signals at the first sensor.
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FIG. 3. PWVD of two chirp signals.

The expressions of the signals at the reference array element are given by

d1(t)= exp[j2π(0.1t + 0.2t2/N)] and d2(t)= exp[j0.4πt2/N],
t = 1,2, . . . ,N. (24)

The autoterms and the crossterms are obtained as

Dd1d1(t, f )=

L f (t)= 0.1+ 0.4t/N
sin[2πL(0.1+ 0.4t/N − f )]
sin[2π(0.1+ 0.4t/N − f )] otherwise (25)

Dd2d2(t, f )=

L f (t)= 0.4t/N
sin[2πL(0.4t/N − f )]
sin[2π(0.4t/N − f )] otherwise (26)

Dd1d2(t, f )=

Lexp[j0.2πt] f (t)= 0.05+ 0.4t/N
sin[2πL(0.05+ 0.4t/N − f )]
sin[2π(0.05+ 0.4t/N − f )] exp[j0.2πt] otherwise

(27)

and

Dd2d1(t, f )=D∗d1d2
(t, f ). (28)

We especially consider the autoterms and the crossterms at the following two
regions: (i) autoterm regions (t, f1) with f1(t) = 0.1 + 0.4t/N and (t, f2) with
f2(t) = 0.4t/N , where the autoterms are dominant; and (ii) crossterm region
(t, fc) with fc(t) = [f1(t) + f2(t)]/2 = 0.05 + 0.4t/N , where the crossterm is
dominant. Both the autoterm and the crossterm regions have large peak values
and are most likely to be selected.

(i) Autoterm regions. In the autoterm region of d1(t), (t, f1), the autoterm
of d1(t) is constant. The autoterm of d2(t) and the crossterm between d1(t) and
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d2(t) are relatively small. The source TFD matrices with this region have the
form of

Ddd(t, f1)=
[
L o

o o

]
, (29)

where o denotes a negligibly small value. Similar results can be obtained for the
autoterm region of d2(t), where the source TFD matrices

Ddd(t, f2)=
[
o o

o L

]
. (30)

Since both matrices have dominant diagonal elements with constant values,
incorporating only autoterm points, either by joint block-diagonalization or by
time-frequency averaging, usually provides good direction finding performance.

(ii) Crossterm regions. In this region the crossterms Dd1d2 and Dd2d1

are dominant. These crossterms are complex conjugates, and the source TFD
matrices within this region take the following form

Ddd(t, fc)=
[

o Lexp(j0.2πt)

Lexp(−j0.2πt) o

]
(31)

which is antidiagonal. Note that unlike a correlation matrix at coherent signal
case, which is singular, the above source TFD matrix is still full rank because
of the absence of dominant diagonal elements (although the matrix is not
necessary positive definite). Accordingly, the noise subspace can be properly
estimated, even when only the crossterm points are selected.

However, since the crossterms change with time t , taking both positive and
negative values, averaging them at different (t, f ) points yields small smoothed
values. Therefore, incorporating multiple time-frequency points in (31) via
time-frequency averaging may lead to degraded performance in some cases.
Performing joint block-diagonalization instead of time-frequency averaging
avoids such risk.

Figures 4 and 5 show the estimated spatial spectra of the t-f MUSIC by
using joint block-diagonalization and time-frequency averaging, respectively,
for three independent trials. From top to bottom, the figures show the results
by choosing (a) autoterm regions f (t) = f1(t) and f (t) = f2(t), (b) crossterm
region f (t)= [f1(t)+ f2(t)]/2, (c) autoterm and crossterm regions f (t) = f1(t),
f (t) = f2(t), and f (t) = [f1(t) + f2(t)]/2, and (d) autoterm region of the first
signal, f (t)= f1(t).

It is seen that both the joint block-diagonalization and time-frequency
averaging resolve the signals in the second and third cases, where the crossterm
points are included. However, the performance is degraded when using the
time-frequency averaging methods. Table 1 shows the standard deviation of
the DOA estimates of signal d1(t) obtained from 100 independent Monte-
Carlo runs. It is evident that the joint block-diagonalization outperforms the
time-frequency averaging, particularly when the crossterm region is involved.
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FIG. 4. Spatial spectra estimates by using joint block-diagonalization. From top: (a) autoterm
regions f (t) = f1(t) and f (t)= f2(t), (b) crossterm region f (t)= [f1(t)+ f2(t)]/2, (c) autoterm and
crossterm regions specified in (a) and (b), and (d) autoterm region of the first signal, f (t)= f1(t).

TABLE 1

Standard Deviation of DOA Estimates

Case (a) Case (b) Case (c) Case (d)

Joint block-diagonalization 0.156◦ 0.154◦ 0.180◦ 0.121◦

Time-frequency averaging 0.179◦ 0.339◦ 0.199◦ 0.161◦
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FIG. 5. Spatial spectra estimates by using time-frequency averaging. From top: (a) autoterm
regions f (t) = f1(t) and f (t)= f2(t), (b) crossterm region f (t)= [f1(t)+ f2(t)]/2, (c) autoterm and
crossterm regions specified in (a) and (b), and (d) autoterm region of the first signal, f (t)= f1(t).

The fourth case in which only one of the two signals is selected has the
best performance for both methods of joint block-diagonalization and time-
frequency averaging. An interesting observation is that, in the second case,
where only the crossterm region is used, the joint block-diagonalization yields
second best performance, whereas the time-frequency averaging shows its worst
performance. We maintain that the above discussed role of TFD crossterms and
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autoterms will not change with FM signal modulations, as it is much dependent
on matrix structure and problem formulation.

For comparison, the estimation error corresponding to the Cramer–Rao
bound (CRB) is 0.148◦ for the above example, whereas the standard deviation
of the DOA estimates from conventional MUSIC is 0.149◦ from the same 100
independent runs. As discussed in Section 3, the improvement of time-frequency
MUSIC is significant when, due to the discrimination capacity of the algorithm,
fewer signals are selected for processing, and/or when the input SNR is low.
It is evident that the time-frequency MUSIC with joint block-diagonalization
outperforms the classical MUSIC when it operates at only one signal arrival
and the variance is lower than the CRB. On the other hand, the improvement
is not evident when both the signals are considered to perform time-frequency
MUSIC, as the input SNR is relatively high in this case.

It is noted that the crossterm becomes less oscillatory as the time-frequency
signatures of the two source signals become closer. When the signals are
coherent, the two signals will have identical time-frequency signatures. The
crossterms reside on top of the autoterms, and they will no longer oscillate along
the crossterm signature. In such a case, the source TFD matrices are singular at
each point, and the t-f MUSIC cannot realize high-resolution DOA estimation.
In this case, processing methods such as spatial averaging methods [11, 12]
should be used. An alternative way is to use the time-frequency maximum
likelihood (t-f ML) method introduced in [8].

5. CONCLUSIONS

The performance of time-frequency MUSIC has been discussed when multiple
time-frequency points representing auto- and crossterms of signal arrivals are
considered in spatial time-frequency distributions. The analysis and simulation
results have shown that the crossterm regions can be incorporated in direction
finding. However, when the time-frequency averaging methods are used, the use
of crossterms may degrade the receiver performance.
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