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Abstract—In this paper, we propose a novel technique for a
non-parametric sparse reconstruction of the Doppler signature of
multiple ground moving targets exploiting prior knowledge about
the target dynamics. The Doppler signature of multiple non-
stationary targets is commonly modeled as a multi-component
polynomial phase signal, whose order depends on the complexity
of target dynamics and the coherent processing interval. In recent
years, sparse signal reconstruction and compressive sensing
algorithms have been extensively deployed in both paramet-
ric and non-parametric estimation of Doppler signatures. The
performance of sparsity based Doppler signature reconstruction
algorithms is significantly compromised in the presence of strong
noise and a large number of missing samples. Herein, we present
an effective technique for a non-parametric sparse reconstruction
of a multi-component Doppler signature by exploiting the a priori
information on target dynamics. Simulation results show that the
proposed technique significantly outperforms the conventional
sparse reconstruction based methods in such challenging condi-
tions.

I. INTRODUCTION

The Doppler signature of multiple non-stationary targets

is commonly modeled as a multi-component general order

polynomial phase signal [1, 2], whose order depends on the

complexity of target dynamics and the coherent processing

interval. A reliable estimation of the Doppler signature, char-

acterizing the target motion, is an important problem in many

radar applications, including localization, motion parameter

estimation and tracking (e.g., [3–5]).

Time-frequency (TF) representations are widely used for an-

alyzing non-stationary Doppler signatures arising from a com-

plex target trajectory. Spectrograms are the most fundamental

TF representations, which perform the short-time Fourier

transform (STFT) over small overlapping/non-overlapping

segments of temporal samples obtained via the application

of a window (e.g., rectangular, Hamming, and Hanning).

Spectrograms generally suffer from limited spectral resolu-

tion and smearing in the TF representations as a result of

windowing in the time-domain. Several other advanced TF

representation methods have been developed over the years to

deal with different types of signals. For example, the Wigner-

Ville distribution (WVD) exhibits excellent performance for

TF analysis and estimation of instantaneous frequency (IF) of

single-component linear frequency modulated (LFM) signals.

However, it introduces cross-terms in the analysis of multi-

component signals, resulting in a significant performance

degradation [6]. Cohen’s class of TF representations, which

reduces the artifacts due to cross-terms by low-pass filtering

the signal in the ambiguity domain, have been widely used

in the analysis of multi-component linear and non-linear

frequency modulated (FM) signals [7, 8]. The adaptive optimal

kernel (AOK) is a commonly used data-dependent kernel

that generally seek auto-term preservation and cross-term

suppression [9]. Complex-time distribution (CTD) is another

class of TF representations introduced to highly concentrate

phase derivatives in the TF plane that provide accurate IF

tracking for signals with fast varying IF [10].

In many practical applications, the observation suffers from

a high proportion of missing samples, due to fading, shadow-

ing or removal of impulse noise. Missing samples introduce

noise-like artifacts spread all over the TF plane. As such, it

becomes difficult to estimate the Doppler signature, accurately

and reliably, using traditional TF representations. In recent

years, sparse reconstruction and compressive sensing algo-

rithms have been successfully applied for reconstruction of TF

signatures [11–13]. To mitigate the effects of missing samples,

several approaches, such as application of signal adaptive

kernels [11, 14, 15] and exploitation of the continuous struc-

ture of the TF signature as a prior [16], have been proposed

for effective reconstruction of TF signatures. A generalized

approach to exploit sparse reconstruction techniques to obtain

quadratic TF distributions based on optimal multi-task kernel

design and from compressed measurements observed in the

time domain or the joint-variable domain is presented in [17].

However, these methods do not exploit the prior knowledge

about the target dynamics, which, as we show in this paper, can

be effectively utilized to mitigate the effects of high percentage

of missing samples and strong noise at a low computational

cost.

In this paper, we consider a problem of estimating the

Doppler signature corresponding to multi-target trajectories

at a Doppler sensor operating in a passive bistatic radar

(PBR) configuration. The measurement vector comprises a

high percentage of missing samples and is corrupted by a

strong additive noise. In such situations, the performance of

the conventional sparse-reconstruction based method degrades

significantly. We exploit the prior knowledge of the target

dynamics and the multi-target state estimates of the preceding

observation interval to pre-estimate the Doppler frequencies

and provide a supplementary layer of intelligence to the sparse

reconstruction algorithm through a feedback mechanism. Sim-

ulation results are provided to validate the ability of the

proposed technique to provide an improved performance over

the conventional method.



Notations: A lower (upper) case bold letter denotes a vector

(matrix). Specifically, IN and 0N denote the N ×N identity

and zero matrices, respectively. (.)∗, (.)T , and (.)H , respec-
tively, denote complex conjugation, transpose, and hermitian

operations, , and ◦ denotes the Hadamard product. Rn×1

and C
n×1, respectively, represent the n-dimensional real and

complex vectors. ‖·‖1 and ‖·‖, respectively, denote the l1 and
l2 norm of a vector, whereas ℜ(.) and ℑ(.), respectively, stand
for the real and imaginary parts of a complex number, and

x ∼ N (a, b) denotes variable x to be a Gaussian distributed

with mean a and variance b. In addition, diag(.) and tr(.),
respectively, denote the diagonal and trace operations.

II. SIGNAL MODEL

We consider N ground moving targets under surveillance in

a PBR system. The PBR configuration comprises a broadcast

station transmitting at a known carrier frequency fc and a

single Doppler sensor. The transmitter is assumed to be located

at b, whereas the sensor is located at r. The transmitter and

the receiver are assumed stationary and their locations are

precisely known a priori.

The problem considered in this paper is to accurately

reconstruct the Doppler signature corresponding to the motion

of N targets by processing the signal received at the Doppler

sensor over a period of T seconds. Considering the sampling

frequency of Fs Hz, the total number of samples over the

entire observation period is equal to Ns = FsT . It is assumed
that, over the entire observation period of T seconds, the

Doppler sensor generates K Doppler frequency estimates, at

a periodic interval ∆, denoted as k = 1, · · · ,K . As such, for

the estimation of instantaneous Doppler frequency over each

interval, the sensor exploits L = Ns/K time samples.

The state vector of the nth target at the kth observation,

xk,n, represents a point in the state space and comprises its

instantaneous position pk,n , [px,k,n, py,k,n]
T and velocity

vk,n , [vx,k,n, vy,k,n]
T in the two-dimensional (2-D) Carte-

sian coordinate system, i.e.,

xk,n = [pT
k,n,v

T
k,n]

T . (1)

As such, the multi-target state set at the kth observation is

given as Xk = {xk,1, · · · ,xk,N}.
The target dynamics is modeled as a linear Gaussian nearly-

constant velocity model, such that

xk,n = Fxk−1,n +Gwk,n, (2)

where F is the state transition matrix defined as

F =

[

I2 ∆I2
02 I2

]

, (3)

and wk,i ∼ N (0, σ2
wI2) is the process noise modeled as

additive white Gaussian random variable. The transition matrix

G =

[

∆
2

2
I2

∆I2

]

(4)

accounts for the small acceleration that could deviate the target

trajectory from being strictly linear. It is assumed that the

target motion is rectilinear and uniform within an observation

interval. As such, the process noise covariance is defined as

Q = σ2

w

[

∆
4

4
I2

∆
3

2
I2

∆
3

2
I2 ∆2I2

]

, (5)

where σ2
w
is the variance of the process noise.

The lth sample of the kth interval is a superposition of

signals reflected from N targets, such that,

yk(l) =

N
∑

n=1

αk,n exp(−2πfk,nl) + ek(l), (6)

where αk,n is the target reflection coefficient corresponding

to the nth target, l = 0, · · · , L− 1 represent the discrete time

instants over the kth interval,  =
√
−1, ek(l) ∼ N (0, σ2

e) is
the additive noise, and fk,n is the bistatic Doppler frequency

given as [4]

fk,n = −
vT
k,n

λ

[

pk,n − r

‖pk,n − r‖ +
pk,n − b

‖pk,n − b‖

]

, (7)

where λ = c/fc is the wavelength of the transmitted signal,

c is the velocity of propagation of a radio signal in free

space. The Doppler measurement space or the field-of-view is

defined over an interval [−f0,+f0] [3], where f0 denotes the

maximum possible Doppler shift. As such, for the kth interval
we obtain the C

L×1 vector ỹk = [yk(1), · · · , yk(L)]T .
As discussed in Section I, in many applications the ob-

servation suffers a high proportion of missing samples, due

to fading, shadowing or impulse noise, which introduces

noise-like artifacts in the TF plane, rendering it difficult to

estimate the Doppler signature, accurately and reliably, using

traditional TF representations. In such situations, sparse signal

reconstruction and compressive sensing algorithms have been

commonly deployed. Let us considerM samples missing from

the CL×1 vector ỹk, where 0 ≤ M < L. The missing

sample positions are assumed to be randomly and uniformly

distributed over time. Accounting for the missing samples, we

define an observation vector yk, such that

yk = ỹk ◦mk, (8)

where

mk =

{

1, if lk ∈ Sk,
0, otherwise,

(9)

with Sk ⊂ {1, · · · , L} denoting the set of observed time

instants and its cardinality is |Sk| = L−M .

The emphasis is on the exploitation of the prior knowledge

about the target dynamics through a feedback mechanism for

a reliable and accurate estimation of the Doppler signature. As

such, we resort to the basic procedure for sparse reconstruc-

tion directly exploiting the time samples as the observation

vectors. Herein, we compare the performance of the sparse

reconstruction method, with and without such feedback. It is

noted, however, that a superior performance may be achieved

by exploiting the Fourier relationship between the TF domain

and the instantaneous auto-correlation function (IAF) domain,

together with the application of AOK for mitigating the effects

of missing samples in the TF plane [16].



III. DOPPLER FREQUENCY ESTIMATION USING

CONVENTIONAL SPARSE SIGNAL RECONSTRUCTION

For exploiting sparse signal reconstruction, we base our for-

mulation on the Fourier relationship between the observation

vector yk and its spectral components. The sparse vector uk

is to be estimated, which contains all the TF representation

entries for the kth observation interval. As such, we can define
a linear relationship

yk = Φuk + ek, (10)

where Φ represents an oversampled IDFT matrix, i.e., L ≪
Nf and ek = [ek(1), · · · , ek(L)]T represents the additive

noise Gaussian vector. As such, the entire Doppler measure-

ment space over the interval [−f0,+f0] is represented by Nf

discrete frequencies. The problem of (10) can be formulated

as the following l1-norm minimization problem,

min ||uk||1 subject to ‖yk −Φuk‖2 ≤ ǫ, (11)

where ǫ is the pre-defined error level. The minimization

problem in (11) can be readily solved using a number of

methods available for sparse signal reconstruction.

The performance of conventional sparse Doppler signature

reconstruction algorithms is significantly compromised in the

presence of strong noise and large number of missing samples.

In the following, we present an effective technique for a

non-parametric sparse reconstruction of a multi-component

Doppler signature by exploiting the a priori information on

target dynamics.

IV. PROPOSED METHOD

The target dynamics is known a priori as defined in (2),

and we assume that the estimated target state from the pre-

vious observation instant X̂k−1 = {x̂k−1,1, · · · , x̂k−1,N} is

available at the sensor. 1 As such, the target state for the next

observation can be pre-estimated as X̄k = {x̄k,1, · · · , x̄k,N},
where

x̄k,n = Fx̂k−1,n, (12)

with x̄k,n = [p̄T
k,n, v̄

T
k,n]

T . Accordingly, we can pre-estimate

the set of Doppler frequency measurements for the kth obser-
vation instant, F̄k = {f̄k,1, · · · , f̄k,N}, where

f̄k,n = −
v̄T
k,n

λ

[

p̄k,n − r

‖p̄k,n − r‖ +
p̄k,n − b

‖p̄k,n − b‖

]

. (13)

Following (6), we can define samples of pre-estimated obser-

vation vector for the kth interval as

ȳk(l) =

N
∑

n=1

exp(−2πf̄k,nl), (14)

resulting in a CL×1 vector ȳk = [ȳk(1), · · · , ȳk(L)]T . In order
to exploit the prior knowledge of target dynamics, we redefine

the measurement vector as a weighted sum of the current

observation vector yk and the pre-estimated observation vector

1In practice, a multi-sensor multi-target tracking algorithm is deployed
to obtain such pre-estimates, as described in [5]. The impact of exploiting
the method proposed herein in the overall multi-sensor multi-target tracking
problem will be discussed in the future work.
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Fig. 1. Passive bistatic radar tracking the movement of multiple targets.

ȳk, such that the sparse reconstruction problem in (10) is

reformulated as

βyk + (1− β)ȳk = Φzk + ek, (15)

where zk represents the unknown sparse vector, β determines

the relative weights assigned to the current observation and the

pre-estimated observation vector. The higher the proportion

of missing samples in the current observation, the higher

weight is assigned to the pre-estimated observation vector. It

is noted that a smaller β puts a lower emphasis on the current

observation, which mitigates the effect of missing sample and

strong additive noise. On the other hand, it results in a slower

adaptation to any sudden changes in target trajectories. The

solution to the underlying sparse reconstruction problem in

(15) is obtained by solving the following l1-norm minimization

problem,

min ||zk||1 subject to ‖(βyk + (1− β)ȳk)−Φzk‖2 ≤ ǫ.
(16)

The solution of the l1-norm minimization technique practically

converges to an N -sparse solution through multi-modal opti-

mization that minimizes the mean absolute error. In this paper,

we use orthogonal matching pursuit (OMP) [18] for the sparse

reconstruction because the number of targets are assumed to be

known a priori. As such, the kth observation instant, we obtain
estimates of instantaneous Doppler frequencies corresponding

to the N ground moving targets,

F̂k = {f̂k,1, · · · , f̂k,N}. (17)

In the following, we present simulation results to demon-

strate that the performance can be significantly improved by

exploiting prior information on target dynamics, particularly

when the observation signal is subject to strong noise and high

percentage of missing samples.

V. SIMULATION RESULTS

In the simulations, we consider a PBR configuration as

illustrated in Fig. 1, where a broadcast station is located at the

origin and transmitting at 950MHz, and the Doppler frequency

measurement sensor is located at a distance of 2.5 km from

the transmitter. The region of surveillance is assumed to be

a rectangular area bounded by [−2500, 2500]T m along both

the x- and y-axes. This example represents a scenario with

two targets with intersecting trajectories and one of the targets

changes its velocity at some instant during the observation

period. We consider two targets initially located at [−1000, 0]T
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Fig. 3. Doppler signature reconstruction (a) Conventional method. (b)
Proposed method.

m and [1000, 0]T m and travelling along linear trajectories with

velocities [30, 30]T m/s and [−30, 30]T m/s, respectively, as

shown in Fig. 1. The second target changes its trajectory and

follows a velocity of [−30, 10]T m/s at k = 61.
We consider an overall observation period of T = 50

seconds divided into K = 100 equal intervals each of period

∆ = 0.5 s, such that each interval consists of 256 time

samples obtained at a sampling rate of 512 Hz. The ground

truth of the Doppler signature observed at the Doppler sensor

monitoring the surveillance area over the entire observation

period is shown in Fig. 2. In order to demonstrate the effect

of high proportion of missing samples and strong noise, we

consider 75% samples missing in each interval, and the SNR is

defined to be −10 dB. In such a situation, the performance of
the conventional sparse reconstruction method is not reliable

as shown in Fig. 3(a). The estimated Doppler signature is

discontinuous and scattered, respectively, due to several false

estimates and missed detections.

On the other hand, as shown in Fig. 3(b), the proposed

method benefits from the exploitation of the prior knowledge

of the target dynamics and the target state estimates from

the previous observation interval. In this simulation, we use

β = 0.5 to assign equal relative weights to the current

observation vector and the predicted observation vector. The

performance improvement over the conventional method de-

pends on the accuracy of target state estimates obtained from

the previous observation interval. This is evident in Fig. 3(b),

as the accuracy of Doppler estimates improves with time,

which in turn, contributes to a better estimation of target state

estimates through a closed-loop process.

VI. CONCLUSIONS

In this paper, we have proposed a scheme for reliably

estimating the Doppler signature at a Doppler sensor operating

in a passive bistatic radar configuration, where the received

signal is assumed to be corrupted by strong additive noise and

a high proportion of missing samples. The proposed method

exploits the prior knowledge about the target dynamics and

provides an additional layer of information in the form of

pre-estimated observation vector to the sparse reconstruction

algorithm through a feedback mechanism. Simulation results

verified a significant performance improvement over the con-

ventional sparse reconstruction methods that do not utilize the

knowledge of target dynamics.
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[10] S. Stanković and L. J. Stanković, “Introducing time-frequency distri-
bution with a ‘complex-time’ argument,” Electr. Lett., vol. 32, no. 14,
pp. 1265–1267, Jul. 1996.

[11] Y. D. Zhang, M. G. Amin, and B. Himed, “Reduced interference time-
frequency representations and sparse reconstruction of undersampled
data,” in Proc. EUSIPCO, Marrakech, Morocco, Sep. 2013, pp. 1–5.

[12] M. G. Amin, Y. D. Zhang, and B. Jokanovic, “Time-frequency signature
reconstruction from random observations using multiple measurement
vectors,” in Proc. ICASSP, Florence, Italy, May 2014, pp. 345–349.

[13] L. Stankovic, S. Stankovic, I. Orovic, and Y. D. Zhang, “Time-
frequency analysis of micro-Doppler signals based on compressive
sensing,” in M. G. Amin (ed.), Compressive Sensing for Urban Radars,
CRC Press, 2014.

[14] Y. D. Zhang and M. G. Amin, “Compressive sensing in nonstationary
array processing using bilinear transforms,” in Proc. IEEE SAM Signal
Proc. Workshop, Hoboken, NJ, Jun. 2012, pp. 349–352.

[15] B. Jokanovic, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Time-
frequency kernel design for sparse joint-variable signal representations,”
in Proc. EUSIPCO, Lisbon, Portugal, Sep. 2014, pp. 2100–2104.

[16] Q. Wu, Y. D. Zhang, and M. G. Amin, “Continuous structure based
Bayesian compressive sensing for sparse reconstruction of time-
frequency distributions,” in Proc. Intl. Conf. DSP, Hong Kong, China,
Aug. 2014, pp. 831–836.

[17] M. Amin, B. Jokanovic, Y. Zhang, and F. Ahmad, “A sparsity perspec-
tive to quadratic time-frequency distributions,” Digital Signal Process.
(in press).

[18] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measure-
ments via orthogonal matching pursuit,” IEEE Trans. Info. Theory, vol.
53, no. 12, pp. 4655–4666, Dec. 2007.


