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Abstract—A class of low-complexity compressive sensing-based
direction-of-arrival (DOA) estimation methods for wideband
co-prime arrays is proposed. It is based on a recently proposed
narrowband estimation method, where a virtual array model is
generated by directly vectorizing the covariance matrix and then
using a sparse signal recovery method to obtain the estimation
result. As there are a large number of redundant entries in both
the auto-correlation and cross-correlation matrices of the two
sub-arrays, they can be combined together to form a model with
a significantly reduced dimension, thereby leading to a solution
with much lower computational complexity without sacrificing
performance. A further reduction in complexity is achieved by
removing noise power estimation from the formulation. Then,
the two proposed low-complexity methods are extended to the
wideband realm utilizing a group sparsity based signal recon-
struction method. A particular advantage of group sparsity is
that it allows a much larger unit inter-element spacing than the
standard co-prime array and therefore leads to further improved
performance.

Index Terms—Co-prime, direction-of-arrival (DOA) estimation,
microphone arrays, sparsity, wideband.

I. INTRODUCTION

T RADITIONALLY, for wideband uniform linear arrays
(ULAs), including microphone arrays, the minimum

inter-element spacing between adjacent sensors is less than
to avoid spatial aliasing, where is the minimum

wavelength within the frequency band of interest [3]–[5].
This can be problematic when considering arrays with a large
aperture size, due to the cost associated with the number of
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sensors. In the past, sparse arrays have been proposed as a
solution [6]–[12], where their non-uniform configuration can
avoid grating lobes, while allowing adjacent physical sensor
spacings to be greater than .
Recently, a new class of sparse arrays, referred to as co-prime

arrays, was proposed [13], [14]. Assume and are co-prime.
Then, a co-prime array can be constructed by two sub-arrays,
with number of sensors varying based on the values of and
. A typical co-prime array consists of two sub-arrays sharing

a sensor at the zeroth position, one with sensors and the
other with sensors. The adjacent sensor spacing for the first
sub-array is , while it is for the second sub-array, where
is the unit inter-element spacing and also the adjacent virtual

sensor spacing of the resultant co-prime difference array (as a
result, we need to have , where is the operating fre-
quency of the co-prime array). As such, with a total number of

sensors, the difference co-array of the two sub-ar-
rays can provide more than degrees of freedom. The in-
creased degrees of freedom (DOFs) can be exploited for effec-
tive direction of arrival (DOA) estimations [14]–[17]. In [14], a
virtual array of a larger aperture is generated from the co-prime
array by vectorizing the covariance matrix, with equivalent co-
herent impinging signals. Then, a rank restoring method based
upon spatial smoothing is utilized for DOA estimation [18],
[19]. Under the condition of imperfect correlation matrix, spar-
sity-based signal recovery method is applied in [15]. In [17], a
sparse signal recovery method based on compressive sensing is
used for narrowband DOA estimation, employing a ULA with
two co-prime frequencies. The aforementioned methods were
all designed for narrowband waveforms.
For wideband DOA estimation, several methods have been

proposed, most notably the incoherent signal subspace method
[20], the coherent signal subspace method [21], the test of
orthogonality of projected subspaces method [22], and the
recently proposed approximate maximum likelihood approach
[23]. In particular, a series of DOA estimation methods based
on the sparse signal recovery approach were developed in [24],
[25]. In [26], a subband information fusion method based on
the concept of group sparsity is introduced to jointly explore
the information in all subbands.
Most recently, we have extended thework in [16] to wideband

DOA estimations using sparse reconstruction and group sparsity
techniques [1]. In essence, the wideband signals received by the
array are decomposed into different frequencies/subbands by
a discrete Fourier transform (DFT) or, more generally, a filter
bank system. Virtual arrays are then formed by vectorizing the
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covariance matrix in each subband. In this case, the equivalent
signal vector of each virtual array is a column vector consisting
of all impinging signal powers. In order to jointly exploit the
information provided by all subbands, the group-sparsity based
signal reconstruction method is employed for enhanced wide-
band DOA estimation.
However, one problem associated with the above method is

its extremely high computational complexity. We recognize
that the virtual array model proposed in the narrowband case
in [16] includes a large number of redundant entries in both
the auto-correlation and the cross-correlation matrices [2].
These redundancies can be combined to form a model with a
significantly reduced dimension, thereby leading to a solution
with a lower computational complexity without sacrificing
performance. A further reduction of complexity is achieved by
considering that the estimation result for noise power can be
removed from the problem formulation. These newly derived
low-complexity methods are then extended to the wideband
case by employing the group-sparsity based signal reconstruc-
tion method to jointly exploit the information provided by all
subbands. It is shown that, with a much lower computational
complexity, the proposed methods for the single frequency case
achieve a very similar performance to the existing one, whereas
their respective wideband extensions exhibit a significantly
improved performance compared to the narrowband ones.
It is well-known that the resolution of an array improves with

an increased aperture size. However, to avoid aliasing, tradition-
ally, a spacing between adjacent sensors of a ULA smaller than

is commonly used. An advantage of the proposed group
sparsity based methods is that the equivalent spacing between
adjacent virtual sensors of the co-prime array can be increased
beyond , while still avoiding spatial aliasing in the es-
timated results. This is because aliasing locations for different
frequencies are different and our group sparsity based methods
will force a common sparsity location across all frequencies,
corresponding to the true location of the impinging signals. In
this respect, we enable the use of a larger inter-element spacing
than that associated with the standard co-prime array, leading to
a further improved DOA estimation performance.
Our contributions are therefore: 1) Developing the group

sparsity-based wideband DOA estimation beyond our prelim-
inary results in [1]; 2) Developing low complexity narrowand
and wideband DOA estimation using sparse reconstruction by
removing the noise term and recognizing the built in redun-
dancies in subarray auto-correlation and cross-correlation lags;
3) Extending the array aperture by permitting a larger sensor
spacing than that defined by half of the minimum wavelength.
This paper is organized as follows. The wideband signal

model for co-prime arrays is presented in Section II. The
proposed low-complexity DOA estimation method is intro-
duced in Section III for a single frequency. Their wideband
extensions are then given in Section IV-A to Section IV-C, and
the co-prime arrays with further improved performance due to
an increased spacing is presented in Section IV-D. Simulation
results are provided in Section V, and results based on collected
acoustic data is presented in Section VI. Conclusions are drawn
in Section VII.

Fig. 1. Structure of a general co-prime array.

II. SIGNAL MODEL WITH CO-PRIME ARRAYS

A co-prime array consists of two uniform linear sub-arrays,
as shown in Fig. 1, where is assumed. The first sub-
array has sensors with an inter-element spacing of , and
the second one has sensors separated by , where

. Note another layout of the co-prime array uses sen-
sors for the second sub-array, instead of . The proposed
methods here are equally applicable to both cases.
The zeroth positions of the two sub-arrays share the same

sensor and in total there are sensors. Denote the
set of sensor positions for the two sub-arrays as and , re-
spectively. The zeroth sensor is removed in for convenience
of formulation at a later stage, i.e.,

(1)

where is the set of all integers.
Assume that there are uncorrelated wideband signals

with the same bandwidth impinging from incident angles
, respectively, where is measured from the

broadside of the array. Then, the signals observed from an ele-
ment in the two sub-arrays can be expressed as:

(2)

where and . Take the zeroth po-
sition of the co-prime array as the reference. Then, and

represent the time delay of the -th impinging signal
with the incident angle arriving at the -th sensor of the first
sub-array and the -th sensor of the second sub-array, respec-
tively. and are white noise at the corresponding
sensors. With a sampling frequency , the discrete version of
the two sets of sub-array signals can be expressed as

(3)

where denotes the transpose operation and the discrete-
time variable.
Each received sensor signal is divided into non-overlapping

groups with length , and an -point DFT is applied. Then, the
-th frequency bin/subband samples of the -th group for each
sub-array can be grouped into one vector as follows

(4)
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where

(5)

with , and .
Define , , and as the DFT of

the -th group discrete-time impinging signals , dis-
crete-time noises at sensors of the two sub-arrays
and , respectively.
is a column vector holding signals at the -th frequency
bin, and and

are the corre-
sponding column noise vectors at the two sub-arrays. Then, the
output signal model in the DFT domain can be expressed as

(6)

where and
are the steering matrices at frequency

corresponding to the -th frequency bin. The column vectors
and are the steering vectors at frequency

and angle , given as

(7)

where and is the wave speed. For each of interest,
(6) can be considered as a narrowband signal model.

III. SPARSITY-BASED LOW-COMPLEXITY DOA ESTIMATION
FOR A SINGLE FREQUENCY

In this section, we first review the narrowband DOA esti-
mation method for co-prime arrays proposed in [16], using the
single-frequency model in (6) as an example in Section III-A,
and then propose our two low-complexity DOA estimation
methods in Sections III-B and III-C.

A. Review of DOA Estimation for Narrowband Co-prime
Arrays
We consider DOA estimation using the data at the -th fre-

quency bin. Denote . Then, the
covariance matrix for is

(8)

where denotes Hermitian transpose, is the expecta-
tion operator, and
is the identity matrix.

represents the power of the -th impinging signal at the -th fre-
quency bin, and is the corresponding noise power.
In practice, can be estimated by

(9)

where is the number of signal blocks for DFT and we assume
that the impinging source signals are wide-sense stationary over
this period.
Vectorizing yields

(10)

where with
( is the Kronecker product and de-

notes the conjugate operation), and .
is a column vector obtained by

vectorizing .
Equation (10) characterizes a virtual array with a higher

number of DOFs, where represents its steering matrix
and represents its equivalent impinging signal vector. Note
that the increased DOFs are only available in the signal and
noise power domain, which enable the DOA estimation of the
signals, but cannot be used to recover their waveforms.
contains virtual sensor positions distributed in the set of cross
differences

and the two sets of self differences

Moreover, (10) can be modified into

(11)

where and .
For the -th frequency bin, with a search grid of potential

incident angles , the steering matrix is gener-
ated by . Here we use the
subscript to describe matrices, vectors or elements related
to the generated search grid. Construct a column vector
consisting of elements, each representing a potential source
signal at the corresponding incident angle. Denote

(12)

The last element in can also be considered as a vari-
able because the noise power is unknown. All the elements
in are powers, and therefore positive real numbers. The
method proposed in [16] can be applied to a single frequency in
the wideband case directly with the following formulation

subject to
(13)
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where is the allowable error bound, is the norm and
the norm. represents the -th entry in the

column vector .

B. Low-complexity DOA Estimation for a Single Frequency

We first add the received signal of the zeroth sensor into the
signal vector of the second sub-array. Then (4) changes to

(14)

where , and the steering vectors described
in (7) become

(15)

Then, the auto-correlation matrices of the signal vectors ob-
served in the two sub-arrays can be obtained as

(16)

(17)

where and are identity matrices with size of and
, respectively. Note here that and are

both Hermitian and Toeplitz.
We can also obtain the cross-correlation matrices of the two

sub-arrays, given by

(18)

(19)

where has a size of and has a size
of , both being all zeroes except for a value of 1 at the

th entry. We have .
For and , the set of

cross difference can reach any integer in the
range of 0 to [13], [14]. The cross difference sets of

and also contain all the lags
included in self difference sets provided by and [27].
The redundant lags can be combined together. Furthermore, the
information contained in is the same as that in .
Therefore, the virtual array generated from contains all

the degrees of freedom. In practice, , , and
can be replaced by their finite-sample estimates , ,

, and , respectively.
Considering , , and

, the complex conjugate part in matrices , ,
and the entire matrix can be removed in virtual array gen-
eration for complexity reduction. A more accurate estimation
of the virtual array model can be obtained by averaging all the
entries with the same lag in auto-correlation matrices. Denote

as the new cross-correlation matrix at the -th frequency
bin. Then, the entry in the -th row and the -th column of

is expressed as

(20)
where the superscripts are the corresponding row and column
indexes.
In (20), an accurate estimation of is obtained by re-

moving duplicate entries and combining redundant entries in
and . Furthermore, redundant entries in can also

be combined for further complexity reduction.
The -th row and -th column entry in is

(21)

Signal powers , and noise power are
all positive real numbers. Considering indexes of and

, and are complex conjugate when
the indexes satisfy the following relationship

which can be modified as

(22)

where , , ,
and . Then, the only necessary and sufficient
condition of (22) is

(23)

Thus, we can obtain the following relationship in matrix

(24)

where and .
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In practice, is replaced by , and a more accurate
estimation of the smoothed cross-correlation matrix can be ob-
tained by averaging the conjugate entries, with (20) updated to

(25)

where is the -th row and the -th column entry in the
updated smoothed cross-correlation matrix .
Matrix corresponds to the cross difference co-array

, with the ability of reaching all the integers
in the range of to 0, where and

. According to (21) and (25), the positive
lags in the cross difference co-array have
been combined and can be removed when vectorizing ,
and the number of positive lags is .

is the vector obtained by vectorizing , i.e.

(26)

where with
, and . is

a column vector obtained by vectorizing the matrix
. and are given as

(27)

With the same search grid of potential angles
as used earlier, the steering matrix is

generated by .
Construct a -element column vector , with each element
representing a potential source at the corresponding incident
angle. Denote

(28)

We use , , to denote the row index
of the column vector , the matrix in (26), and the
matrix in (28). Then, each entry of is expressed as

. Row vectors and are used to represent
the -th row of the matrices and , respectively.
Denote , as the row indexes
corresponding to all the negative lags, where

is the number of indexes set

. Keeping
all the row indexes , we obtain a virtual array model as

(29)

where and
.

Then the proposed low-complexity DOA estimation method
can be expressed as

subject to
(30)

where , and
is the -th entry of column vector .
In (13) and (30), the first elements of give the corre-

sponding DOA estimation results over search grids. Com-
pared with (13), there is a significant reduction in the number
of entries in the optimization problem (30) due to the combina-
tion of redundant entries, leading to reduction in computational
complexity using various optimization toolboxes.

C. Further Reduction by Removing Noise Power Estimation

In (26), is an all-zero column vector except for the ze-
roth entry. Only the zeroth element in related to the zero lag
is influenced by noise power , and the estimation of noise
power takes up one DOF. As a result, we can remove the zero lag
part to avoid estimating in (30). In so doing, the range of
difference co-array lags in from to with
DOFs can still be provided by the co-prime array, with the new
set of available DOFs fully dedicated to DOA estimation. Fur-
ther reduction in computational complexity is achieved due to
the reduction in the number of parameters to be estimated and
the number of entries.
We use , , to be the row index of ,

in (29), and in (30). Then, each entry of is ex-
pressed as . Row vectors and are used
to represent the -th row of and , respectively.
Removing the first row with , we obtain a virtual array
model

(31)

where , and
.

Then, the modified low-complexity DOA estimation method
for a single frequency at the -th frequency bin can be expressed
as

subject to
(32)

where , and is the
-th entry of the column vector .
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The problems in (13), (30), and (32) can be solved using
CVX, a software package for specifying and solving convex
problems [28], [29].

IV. WIDEBAND DOA ESTIMATION METHOD BASED ON
GROUP SPARSITY FOR CO-PRIME ARRAYS

For wideband signals transformed into multiple frequency
bins as described in Section II, we could apply the algorithm in
(13), (30), and (32) to the frequency range of interest one by one
and then average the results to give the final estimation. A more
effective approach that achieves a higher accuracy, however, is
to jointly estimate the DOA of the impinging signals across the
entire frequency range of interest simultaneously based on the
group sparsity concept, i.e., the DOA results corresponding to
different frequencies share the same spatial support, although
theymay have varying power values. Assume that the frequency
range or bandwidth of interest covers frequency bins in the
DFT domain, where the frequency bins may or may
not be adjacent to each other. For each frequency bin ,

, where is the set of frequency bin indexes,
the same search grid of potential incident angles are used to
generate all the matrices needed as described for each method.

A. Wideband Extension 1 Based on Existing DOA Estimation
Method

First, we construct two matrices: a block diagonal matrix
using , expressed as

(33)

and a matrix using with

(34)

Then, we obtain the following virtual array model

(35)

where and is a
column vector by vectorizing .

We use the row vector , , to represent the
-th row of the matrix . Then, we form a new

vector based on the norm of ,

(36)

Finally, our group-sparsity based wideband DOA estimation
method is formulated as follows

subject to
(37)

where represents the -th element of the column vector
, and the nonzero entries in the first elements of the

column vector are the corresponding wideband DOA esti-
mation results over the search grids.

B. Wideband Extension 2 Based on Proposed Low-complexity
DOA Estimation Method
The proposed low-complexity wideband virtual array model

extended from narrowband DOA estimation method (30) can be
shown as

(38)

where , , and the
block diagonal matrix given by

(39)

Then, the proposed low-complexity wideband DOA estimation
method is formulated as

subject to
(40)

C. Wideband Extension 3 Based on Further Complexity
Reduction DOA Estimation Method
Two matrices, i.e., block diagonal matrix and

matrix , are constructed using and respec-
tively, given by

(41)

Then, the further improved wideband virtual array model is
given by

(42)

where and is a
column vector by vectorizing .

Row vector , is used to represent the
-th row of . Then, we form a new vector based

on the norm of , , as

(43)

Finally, the modified wideband DOA estimation method based
on group sparsity is formulated as follows

subject to
(44)

where represents the -th element of the column vector
, and the nonzero entries in the elements of the column

vector are the corresponding wideband DOA estimation re-
sults over the search grids.
Similar to the single frequency case, the reduction in the

number of entries in the proposed wideband formulation will
result in significant complexity reduction in the optimization
process. These optimization problems in (37), (40), and (44)
can also be solved using CVX [28], [29].
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TABLE I
NUMBER OF ENTRIES IN VECTORS/MATRICES

TABLE II
NUMBER OF ENTRIES IN VECTORS/MATRICES AND COMPUTATION TIME FOR THE EXAMPLE

D. Performance Improvement With Large Unit Spacing
The resolution of an array will improve with an increased

aperture size. For existing DOA estimation methods for both
narrowband signals and wideband signals, an equivalent unit
spacing satisfying is normally chosen to avoid
spatial aliasing. An advantage of our proposed group sparsity
based methods is that we can increase the spacing to be larger
than , while still avoiding spatial aliasing. This is be-
cause aliasing locations for different frequencies are different
and the proposed group sparsity based methods will force a
common sparsity location across all frequencies, corresponding
to the true location of the impinging signals. Thus, the proposed
methods allow a larger spacing than the standard co-prime array,
leading to a larger virtual array aperture, and therefore more ac-
curate estimation results can be obtained. However, we can ex-
pect that when is larger than some threshold value, the DOA
estimation results will degrade, as will be shown in our sim-
ulations part. When , where the largest virtual
array aperture can be achieved under the condition of no spa-
tial aliasing only for the minimum frequency of interest, we can
still perform effective DOA estimation.

V. SIMULATION RESULTS
Consider a co-prime array with and . With
twice the highest frequency of interest, the normalized fre-

quencies of the impinging signals cover the range from to
, and the unit spacing with . As

an example, for a microphone array, this is equivalent to a fre-
quency band from 5 kHz to 10 kHz with a sampling frequency
of 20 kHz and cm at a speed of 340 m/s.

The number of signal samples in the time domain at each
sensor is 128000, and DFT of points is applied. Then,
the number of data blocks used for estimating , ,

, , and at each frequency bin is .
There are 15 uncorrelated wideband signals impinging on the
array, with incident angles uniformly distributed between
and 60 . A search grid of angles is formed within
the full angle range with a step size of 0.05 . The normalized
frequency range of impinging signals covers the frequency bin
set with .

A. Data Storage Analysis and Computation Time Comparison

First, the number of entries in the vectors/matrices involved
is shown in Table I for the three narrowband DOA estimation
methods and their wideband extensions. Fewer entries lead to
less multiplicative and additive operations in the corresponding
formulations, which is then translated into a lower compu-
tational complexity. For the underlying example, the exact
number of entries is shown in Table II. We see that the existing
method in (13) has the largest number of entries among all
narrowband methods, while its wideband extension (37) has
the largest number of entries among all wideband ones. The
computation time using the CVX package, calculated by the
MATLAB profiler under the environment of Intel CPU I5-3470
with a clock speed of 3.20 GHz and 8 GB RAM, is also listed
in Table II. It is clear that the existing method has the longest
processing time among all the three narrowband methods, with
the one in (32) being the shortest. Their wideband extensions
keep the same features.
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Fig. 2. Estimation results obtained by the three narrowband methods. The
dotted lines represent the actual incident angles of the impinging signals, while
the solid lines represent the estimation results. (a) Estimation results of existing
method for single frequency. (b) Estimation results of proposed low complexity
method for single frequency. (c) Estimation results of modified low complexity
method for single frequency.

B. Low-Complexity DOA Estimation Results

For the first set of simulations, the input SNR is 0 dB and the
allowable error bound is chosen to give the best result for each
method through trial-and-error in every experiment1. Specifi-
cally, it is set to be 10 for the existing narrowband method in
(13), 5 for our proposed low-complexity method in (30), and
4 for our modified method in (32). For the wideband case, 65,

1Roughly speaking, the value of is related to the noise power of the
system and also all kinds of array and data model errors in the sparse re-
construction equation. Unfortunately, as a common parameter for all sparsity
based optimization methods, there is no analytical result for its selection for
the general case and it is very difficult to give the range of this parameter
for our simulation scenarios.

Fig. 3. DOA estimation results obtained by the three wideband extensions.
(a) DOA estimation results of wideband extension based on existing method.
(b) DOA estimation results of wideband extension based on proposed low com-
plexity method. (c) DOA estimation results of wideband extension based on
modified low complexity method.

25, and 13 were chosen as the allowable error bound , respec-
tively. The much larger value for in the wideband case is due
to the norm operation based on frequencies instead of
one single frequency. The DOA estimation results for the single
frequency ( ) are shown in Fig. 2, and the wideband re-
sults are shown in Fig. 3, where the dotted lines in the figures
represent the actual incident angles of the impinging signals,
while the solid lines represent the estimation results. It is clear
that all the sources have been distinguished successfully by all
the studied methods.
To compare the estimation accuracy with respect to a varied

input SNR, the root mean square error (RMSE) results are
shown in Fig. 4, where each point is based on an average of the
results obtained by 500 simulation runs. Clearly, their narrow-
band performances are nearly the same for most of the cases,
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Fig. 4. RMSEs of different DOA estimations for single frequency and their
wideband extensions versus input SNR. (a) RMSEs of different methods for
single frequency. (b) RMSEs of different wideband extensions.

and their wideband extensions share a similar performance with
extensions 2 and 3 being slightly more accurate. Furthermore,
these proposed wideband extensions consistently outperform
the narrowband ones by a large margin.
Finally, in this part, we give an example where the narrow-

band method clearly fails while the proposed wideband method
can still provide a good result. The setting is the same as before
except that now there are 21 sources uniformly distributed be-
tween 60 and 60 . Due to the increased signal number and
reduced separation between DOAs of adjacent signals, the es-
timation task is much tougher than the previous settings and
therefore can show the difference of their performances more
effectively. The results of the modified low-complexity method
for the single frequency case and its wideband extension are
shown in Fig. 5, which again verifies the superior performance
of the wideband method.

C. Results with Large Unit Spacing Co-Prime Arrays

Now we increase the unit spacing to be larger than ,
with , and examine its effect
on the estimation results. To depict the change of the estima-
tion results due to a change of more clearly, a search grid
of incident angles is formed within the full angle
range with a smaller step size of 0.01 . Other parameters remain
the same as the previous simulation examples. We set to be
1.33. Then, for frequency bins, the first 8 frequency
bins with satisfy while the other

Fig. 5. DOA estimation results obtained by the modified low complexity nar-
rowband method and its wideband extension. (a) Narrowband DOA estimation
results. (b) Wideband DOA estimation results.

Fig. 6. DOA estimation results obtained by group sparsity based wideband
method with .

7 bins of satisfy . We use wide-
band extension 3 based on the modified low-complexity method
(44) in our simulation. The results are shown in Fig. 6, where
we can observe that all the 15 sources have been distinguished
successfully.
To compare the estimation accuracy for different values of

with respect to a varied input SNR, the RMSE results of ,
and are shown in Fig. 7, where each point

is based on an average of the results obtained by 500 simulation
runs. Clearly, a relatively larger unit spacing , corresponding
to a larger , yields more accurate results.
However, there is a limit to which an increase of will lead

to an improved performance. To show this, we fix the input SNR
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Fig. 7. RMSEs with different versus input SNR.

Fig. 8. RMSEs versus .

to 0 dB; and the RMSE results versus are shown in Fig. 8. In
this example, since the frequency range is from to , we
have . Then corresponds to .
So, we can expect should still give a good performance,
as verified in Fig. 8. Note that there are two factors guiding
the best value for or . Increasing , the aperture size is
increased and so is resolution; on the other hand, an increase of
beyond the value of will cause aliasing problems for all
frequencies and make the whole DOA estimation problem more
difficult to solve. When keeps increasing until some value
beyond which, the gain due to a larger aperture size will be
offset by the loss due to the increased difficulty. Therefore, we
expect the performance becomes better with the initial increase
of , but gets worse when is increased beyond some value. As
shown in Fig. 8, for about , the performance is
quite flat, but seems to be the middle point of this flat
region, indicating that can be a reasonable choice
in practice.

VI. EXPERIMENT RESULTS

To test the performance of the proposed algorithms in a real
scenario, a co-prime microphone array system with and

is set up for our experiment and there are
microphones in total. The received acoustic signals, after

amplification, are then sampled through a data acquisition card
(ADLINK’s DAQ-2205) and stored in a computer. A picture
of the system is shown in Fig. 9. The sampling frequency is
set to be 20 kHz, and the frequency band of interest is from
5 kHz to 10 kHz giving a minimum wavelength of

cm at a speed of 340 m/s. Then, the equivalent unit spacing

Fig. 9. The co-prime microphone array system for data collection.

Fig. 10. Estimation results for collected acoustic data.

cm, and the positions of the two sub-array
elements are given by

(45)

In this experiment, there are 10 uncorrelated acoustic source
signals distributed from around to 50 with an approxi-
mate step size of 10 . We apply the method in (44) to the col-
lected data to obtain the DOA estimation results. The number of
signal samples in the time domain for each microphone channel
is 128000, and DFT of points is applied. A search
grid of incident angles is formed within the full
angle range with a step size of 0.05 . The normalized frequency
range of impinging signals covers the frequency bin set

with . These parameters are the same
as the setting in Section V, and the results are shown in Fig. 10.
It is evident that all the 10 sources have been distinguished suc-
cessfully by the proposed method.

VII. CONCLUSION
A class of low-complexity compressive sensing based DOA

estimation methods for wideband co-prime arrays have been
proposed. We first derived a class of low-complexity narrow-
band DOA estimation methods, where a virtual array at each
frequency bin with a much larger aperture is formed. Then re-
dundant entries are combined in both auto-correlation and cross-
correlation matrices to obtain more accurate approximations to
the required correlation values. A further reduction in the com-
putational complexity is achieved by removing noise power es-
timation from the formulation. By simultaneously exploiting the
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information at different frequency bins for the wideband case, a
group-sparsity based optimization problem is formulated which
is amenable to application of existing convex optimization tool-
boxes. This group-sparsity based method is further applied to
co-prime arrays with a much larger unit spacing for better per-
formances. It has been shown by simulations that our proposed
methods in narrowband case have almost the same estimation
performance, but with significantly lower computational com-
plexity than the existing method. All these methods work ef-
fectively in the wideband case over a wide input SNR range,
and achieve a much better estimation result than using one fre-
quency only.
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