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Abstract—In this paper, we propose the concept of high-resolution mas-
sive multiple-input multiple-output (MIMO) radar with large-aperture
sparse arrays for autonomous driving by exploiting multi-frequency
signaling. The diversity offered by multi-frequency signals renders a high
number of virtual sensors that effectively increase the degrees of freedom.
Two strategies are developed to synthesize virtual sparse arrays by jointly
utilizing MIMO radar sum coarray and multi-frequency signaling, re-
spectively with and without further incorporating the difference coarray
concept. As an example, we synthesize sparse arrays with an aperture
of around 100 normalized half-wavelength using only 7 physical array
elements in the context of the proposed multi-frequency MIMO radar.

Index Terms—automotive radar, autonomous driving, multi-frequency
sparse arrays, matrix completion, MIMO radar

I. INTRODUCTION

Automotive radars have found increasingly important in advanced
driver assistance systems, such as adaptive cruise control and au-
tomatic emergency braking. According to studies conducted by the
National Highway Traffic Safety Administration (NHTSA), 37, 461
Americans died on U.S. highways in 2016 as a result of automobile
accidents [1], of which 94% were due to human errors [2]. To remedy
this problem, radar has emerged as one of the key technologies in
autonomous driving systems. Some of today’s self-driving vehicles,
such as Zoox, are equipped with more than 10 radars, providing a
360
◦ surround sensing capability under all weather conditions [3–5].

Automotive radar is the largest commercial market for radar outside
of defense. Automotive radars are typically operated in millimeter-
wave frequencies between 76–81 GHz [5, 6]. Other frequency bands,
such as 120–260 GHz, are also possible for automotive radar appli-
cations [7–9].

Unlike conventional surveillance radars, automotive radars are
typically operated for a short range (within multi-hundred meters)
and must meet strict requirements on their size (multi-inch by multi-
inch), power (multi-watt), and cost. They are required to be integrated
behind the vehicle bumper or windshield and operated in a highly
dynamic propagation environment with rich multipath [5].

Existing automotive multiple-input multiple-output (MIMO) radar
transceivers, such as Texas Instruments (TI) AWR1243, typically
support 3 transmit and 4 receive antennas [10], rendering a total
number of 12 sum coarray elements to achieve angular resolution
of around 10 degrees. Level 4/Level 5 autonomous driving requires
higher angular resolution to generate point clouds which represent the
shapes of surrounding objects [11, 12] and enable target identification
using deep neural network-based machine learning techniques [13,
14].

Automotive radars achieve high spatial resolution using antenna
arrays with a large array aperture. When using a conventional uniform
linear array (ULA) with half-wavelength interelement spacing, the
aperture is proportional to the number of array sensors. As such,

high-resolution target direction-of-arrival (DOA) estimation requires
a high number of antennas which are often infeasible in automotive
radar applications due to the strict cost constraints. One of the
effective techniques to enable cost reduction of automotive radars is
MIMO radar [15]. MIMO radar technologies have been commonly
exploited by most major suppliers in different types of automotive
radar products, including short-range, medium-range, and long-range
radars [11, 16–18].

The cost of synthesizing a large virtual ULA with half-wavelength
interelement spacing in the context of MIMO radar technology is
still high for mass production of automotive radars. One way to
further reduce the cost without sacrificing the angular resolution
is to exploit nonuniform or sparse linear arrays (SLAs), in lieu of
ULAs, for MIMO radar synthesis [19, 20]. MIMO radar systems
exploiting SLA configurations reduce the required number of transmit
and receive antennas by removing a subset of antenna sensors from
a ULA with half-wavelength interelement spacing. As such, the
effective interelement spacing of the corresponding virtual array
becomes larger than half wavelength, while the array aperture remains
the same as that of the original ULA based on which the SLA
is ontained. A number of sparse array configurations, such as the
minimum redundant array (MRA) [21], nested array [22], coprime
array [23, 24], and maximum interelement spacing constraint (MISC)
array [25], have been reported in the literature.

SLAs using the difference coarray concept provide a scheme to
estimate a high number of targets that may exceed the number of
array elements. However, obtaining difference coarrays requires a
high number of data snapshots that enable accurate array covariance
matrix estimation. In highly dynamic automotive scenarios, however,
it is often challenging to collect target data over multiple coherent
processing intervals because the positions of both radar-mounted
vehicle and objects may change rapidly [5]. As a result, only few
snapshots or even a single snapshot are available for DOA estimation
[26]. Interpolation and extrapolation techniques are attractive to
automotive radars by filling missing holes in the synthesized SLA
[27, 28].

In this paper, we propose a novel sparse array framework that
utilizes multi-frequency signals to enable higher spatial degrees of
freedom (DOFs) for high-resolution DOA estimation. Signal process-
ing techniques are developed to achieve effective DOA estimation for
various array configurations with uniform or irregular virtual sensor
locations.

The concept of constructing virtual arrays by exploiting two or
more frequencies was first developed for coprime arrays using a sin-
gle ULA [29, 30], and was recently extended to general sparse array
designs [31, 32]. In this paper, we deal with multi-frequency sparse
arrays in the context of MIMO radar for automotive applications.



II. MIMO RADAR WAVEFORM DESIGN

A. FMCW Radar

Frequency-modulated continuous-wave (FMCW) waveforms are
commonly used in existing automotive radars because they enable
high-resolution target range and velocity estimation while requiring
low-cost samplers at the receivers [5]. An FMCW waveform is a
periodical linear frequency modulated signal, also known as a chirp
signal, that is transmitted with a certain pulse repetition frequency.
At the receiver, the target echo signal is correlated with the trans-
mitted chirp, yielding a complex sinusoidal beat signal. The narrow
bandwidth of the beat signal is a major reason to use FMCW signals
in automotive radar because the beat signal can be digitized using a
low-speed analog-to-digital converter (ADC) at a low cost.

The frequency of the beat signal is associated with the target
range information, whereas the phase variation of the beat signal
over slow-time pulses renders the Doppler frequency of the targets.
As such, the targets are first separated in the range and Doppler
domains. As a result, the number of targets in the same range-
Doppler bin is typically small, thereby facilitating DOA estimation
with sparse sensing techniques based on compressive sensing [33,
34]. Recently, phase-modulated continuous-wave (PMCW) radars
are also considered in automotive radars that offer better waveform
orthogonality but require higher receiver complexity [5].

B. MIMO Radar Waveform Design with Dual Frequencies

Consider an automotive radar equipped with Mt transmit and Mr

receive antennas. Each transmit antenna transmits a sequence of N
FMCW chirps that sweep at two carrier frequencies, f1 and f2,
respectively, with the same sweep bandwidth of B. At each receiver,
the echo signals are mixed with transmitted chirps respectively at the
two carrier frequencies to obtain beat signals. To achieve waveform
orthogonality, the chirps are multiplied with a phase code that is
different for each antenna and changes for each chirp. We denote
such phase code as xm (n) = e

j2παm(n) for m = 1, · · · ,Mt and
n = 1, · · · , N . The phase codes are designed such that the Doppler
fast Fourier transform (FFT) of the interference can be distributed
into the entire Doppler spectrum as pseudo noise. One of such phase
codes is Chu sequences [35].

III. MULTI-FREQUENCY SPARSE MIMO RADARS

In this section, we consider two ways to exploit multi-frequency
sparse MIMO radars based on the number of available array snap-
shots. The first one utilizes the difference coarray concept whereas the
second does not. In the proposed multi-frequency sparse MIMO radar,
the array snapshot is referred to as the array response at a particular
time instance consisting of data obtained at all virtual receivers and
corresponding to the same range-Doppler bin.

A. Multi-Frequency Sparse MIMO Radar Exploiting Difference
Coarray Concept

We extend the array synthesis approach for sparse arrays [29] to
MIMO radars. We consider a two-frequency case, and the locations
of the transmit and receive antennas are designed such that the
synthesized sum coarrays corresponding to the two carrier frequen-
cies, f1 and f2, form ULAs with interelement spacing of M1λ1/2
and M2λ2/2, respectively. Here, M1 and M2 are coprime integers,
f2 = (M2/M1)f1, and λ1 and λ2 are the respective wavelengths
corresponding to these two frequencies. Such sum coarrays can be
achieved, for example, using physical transmit and receive antenna
arrays that are ULAs with interelement spacing of M1λ1/2 and
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Fig. 1. The physical array, sum coarray, and lags of difference coarray of
sum coarray: (a) at frequency f1; (b) at frequency f2.

MtM1λ1/2, respectively [36]. The virtual sensor set of the resulting
sum coarray can be expressed as

S = {M1n1d0, 0 ≤ n1 ≤MtMr − 1}
∪ {M2n2d0, 0 ≤ n2 ≤MtMr − 1} , (1)

where d0 denotes half-wavelength in a normalized frequency. When
an adequate number of snapshots are available to construct the array
covariance matrix, a difference coarray can be constructed by utilizing
the difference lags of this sum coarray.

As an illustrative example for multi-frequency sparse MIMO
radar exploiting difference coarrays, we consider a radar transceiver
consisting of Mt = 3 transmit and Mr = 4 receive antennas. The
physical transmit and receive antennas are located at [1, 2, 3]M1d
and [4, 7, 10, 13]M1d, respectively, where M1 = 5,M2 = 9, and
d = λ1/2. We choose f1 = 78 GHz and f2 = (M2/M1)f1 = 140.4
GHz. In this case, two virtual ULAs corresponding to the two carrier
frequencies are synthesized with coprime element spacings, as shown
in Fig. 1.

The two sum coarrays corresponding to the two carrier frequencies
are combined together such that the reference element is at position
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Fig. 2. The sum of combined coarray and the corresponding difference lags
of the combined sum coarray.

zero. The difference coarray of the combined sum coarray is shown
in Fig. 2. It can be found that the difference lags of the combined
sum coarray has 135 successive lags on the half-wavelength grid.
There are holes which can be filled using, e.g., matrix completion
approaches [31, 37, 38].

B. Multi-Frequency Sparse MIMO Radar without Exploiting Differ-
ence Coarray Concept

In highly dynamic scenarios as commonly encountered in au-
tonomous driving, the number of array snapshots is limited. As a
result, it may not be able to utilize difference coarray as its applica-
bility relies on an adequate number of data snapshots to reconstruct an
accurate array covariance matrix. In this case, instead of synthesizing
a large difference coarray with consecutive lag positions, one useful
strategy is to design a dual-frequency sparse MIMO radar with
randomly deployed transmit and receive array antennas to synthesize
a random sum coarray.

In Fig. 3, we give an example of two-frequency sparse MIMO
radar. As shown in Fig. 3(a), the physical transmit and receive
antennas are located at [1, 16, 23]λ1/2 and [4, 13, 21, 29]λ1/2, re-
spectively. When assuming f2 = 2f1, the sum coarrays obtained for
the two frequencies are shown in Figs. 3(a) and 3(b). These sum
coarrays can be combined together.

IV. DOA ESTIMATION USING MULTI-FREQUENCY SPARSE

MIMO RADAR

Consider K targets with their respective DOAs denoted as θk, k =
1, · · · ,K. The sparse array with Q1 virtual antennas are located over
a grid with a total number of Q2 grid points and the grid size is
normalized to half wavelength. In the absence of noise, the SLA
response is expressed as

yS = ASs ∈ CQ1×1
, (2)

where AS = [aS (θ1) , · · · ,aS (θK)] is the array manifold ma-
trix with the associated steering vector expressed as aS (θk) =[
1, e

j 2π
λ
d1 sin(θk), · · · , ej

2π
λ
dQ1−1 sin(θk)

]T
, and di is the position of

the i-th element of SLA with respect to the reference element. Here,
λ is the normalized wavelength. In addition, s = [β1, · · · , βK ]

T ,
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Fig. 3. Physical array and sum coray for dual-frequency MIMO sparse array:
(a) carrier frequency f1; (b) carrier frequency f2 = 2f1.

where βk denotes the amplitude associated with the k-th target. With
the sparse array response yS , we can construct a vector y ∈ CQ2×1

of which Q2−Q1 elements are zeros, corresponding to the locations
where no virtual antennas are placed.

In general, there are two directions to carry out the DOA estimation
in multi-frequency sparse arrays, depending on whether the holes of
sparse array are filled or not.

A. DOA Estimation with Array Interpolation

It is noted that, because the random sum coarray formed from the
multi-frequency sparse MIMO radar is sparse, it is vital to deal with
the high sidelobe levels by filling the holes in the combined random
sum coarray via matrix completion [38].

Denote N2 = bQ2/2c and N1 = Q2 − N2 ≥ N2, where b.c
denotes the floor function. Then, we can formulate y ∈ CQ2×1 into
N2 overlapped subarrays of length N1. Based on those subarrays, we
formulate a Hankel matrix X ∈ CN1×N2 with its (i, j)-th element
given as Xij = yi+j−1 for i = 1, · · · , N1 and j = 1, · · · , N2.
Matrix X has many missing entries and thus can be viewed as a
thinned version of the corresponding matrix Y constructed from



the virtual ULA with half wavelength spacing. Under certain mild
conditions, the missing elements can be fully recovered by solving
a relaxed nuclear norm optimization problem conditioned on the
observed entries, expressed as [39]

min ‖X‖∗ s.t. Xij = Yij , (i, j) ∈ Ω, (3)

where || · ||∗ denotes the nuclear norm of a matrix, and Ω is the
set of indices of the observed entries that is determined by the SLA
configuration. Once matrix Y is recovered, the full array response is
obtained by averaging its anti-diagonal entries.

Fig. 4(a) shows the beampattern of the two-frequency sparse
MIMO radar with sum coarray example given in Fig. 3. It can be
found that the sidelobe of the sparse array is relatively high without
filling the holes or optimally choosing the virtual sparse array element
locations. Fig. 4(b) compares the FFT spectra of the sparse array
response with holes as well as that for the filled full array after
performing matrix completion, where the input signal-to-noise ratio
(SNR) is set to 20 dB. Two targets are located at DOAs of 10

◦

and 20
◦, respectively. It can be found that the sidelobe levels are

substantially lowered when the holes of a sparse array are filled
via matrix completion. DOAs can be estimated via standard array
processing methods based on the array response corresponding to
the completed matrix Y.

In the multi-frequency sparse MIMO radar exploiting the difference
coarray, we can also synthesize a virtual array with large consecutive
ULA or carry out virtual array interpolation to fill the holes [37,
38]. As a result, the DOA estimation can be implemented via
the commonly used subspace-based methods, such as MUSIC and
ESPRIT. DOA estimation can also be carried out using compressive
sensing by exploiting the group sparsity of the signals across different
frequencies [31].

B. DOA Estimation without Array Interpolation

For multi-frequency sparse MIMO radar without exploiting dif-
ference coarrays, target DOA estimation can be based on digital
beamforming or compressive sensing, provided that the peak sidelobe
levels (PSLs) of the sparse array are controlled to be sufficiently low.

When performing compressive sensing-based DOA estimation, we
need to discretize the DOA space into N fine grids, and the K targets
are assumed to be on the grid. The array response can be written as

y = Aβ + n, (4)

where A = [a (θ1) , · · · ,a (θN )] is the basis matrix and β =
[β1, · · · , βN ] is a sparse vector with K non-zero elements. The target
DOAs can be found by solving an `1 norm optimization problem,
such as the Dantzig selector [40] defined as

min ‖β‖`1
s.t.

∥∥∥AH
(y −Aβ)

∥∥∥
`∞

< η, (5)

or greedy methods, such as orthogonal matching pursuit (OMP) [41].
The coherence of the sensing matrix used in compressive sensing,

defined as

µ , max
i 6=l

∣∣∣aH (θi)a (θl)
∣∣∣

‖a (θi)‖`2‖a (θl)‖`2
, (6)

needs to be kept low in order to obtain uniform recovery guarantees
[42]. In the above expression, a (θi) is the steering vector of the
SLA at direction θi. It can be easily verified that the value of µ is
the PSL of the array beampattern [43]. Therefore, it is vital to design
multi-frequency sparse MIMO radars with a low PSL.

V. CONCLUSIONS

In this paper, we proposed a cost-effective massive MIMO radar
system for autonomous driving by exploiting both multi-frequency
signaling and sparse MIMO radar concepts. The proposed radar
systems have been shown to significantly increase the degrees of
freedom in virtual array aperture to enable high-resolution target
DOA estimation for autonomous driving. Two strategies to synthesize
a virtual sparse array have been developed. DOA estimation with
and without incorporating array interpolation were examined for the
proposed multi-frequency sparse MIMO radar.
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