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Abstract—In this paper, we present a novel non-redundant
sparse array design that simultaneously achieves the highest
possible number of degrees-of-freedom and a flexible array aper-
ture, resulting in superior direction-of-arrival (DOA) estimation
performance. We first develop a zero-redundancy design rule
based on the co-array properties of the sparse arrays. This design
rule guides the construction of non-redundant sparse arrays with
a compact as well as a flexible aperture. As a result, given the
same number of physical sensors, the proposed array design
provides a difference co-array with the maximum number of
correlation lags and resolves more sources than the minimum
redundancy array. Moreover, the proposed array design provides
better DOA estimation resolution compared to the minimum
hole array due to the extended array aperture. Simulation
results demonstrate the superiority of the proposed array design
compared to the existing array structures.
Keywords: Sparse array, minimum redundancy array, non-
redundant array, difference co-array, direction-of-arrival esti-
mation.

I. INTRODUCTION

Direction-of-Arrival (DOA) estimation is an important re-
search problem in array signal processing which finds broad
applications in radar, sonar, wireless communications, radio
astronomy, and many other fields [1, 2]. Due to the Nyquist
sampling theorem, uniform linear array (ULA) has traditionally
emerged as the commonly used sensor array structure for DOA
estimation and its DOA estimation performance has been well
analyzed [1–4]. However, ULAs cannot resolve more sources
than the number of elements in the sensor array. Therefore,
several research efforts have been invested in the past to detect
more sources than the number of sensors using sparse arrays
by exploiting their difference co-arrays [5–7].

The minimum redundancy array (MRA) and the minimum
hole array (MHA) are popular classical sparse array structures.
The MRA achieves the maximum number of consecutive dif-
ference co-array lags which can be achieved by a sparse array
for the given number of sensors [5], whereas the MHA, also
known as non-redundant array or Golomb array, minimizes
the number of holes in the difference co-array while achieving
the maximum number of co-array lags [6, 8]. In other words,
the MHA achieves the smallest possible array aperture for
the given number of sensors such that the maximum number
of co-array lags are achieved. Such properties are attractive
to maintain a low sidelobe level when performing DOA
estimation for a high number of sources.

Recently, significant research efforts have been dedicated
to develop systematical sparse arrays designs which follow a
specific design formulation or structure, thus enabling conve-
nient design and analysis. In this context, two notable sparse
arrays are the nested array [9] and the coprime array [10].
These array structures and their variants have been extensively
analyzed, and closed-form expressions for their design process
and the achievable number of degrees-of-freedom (DOFs) are
well devised [9–15]. Structured sparse array design and anal-
ysis exploiting higher-order statistics [16–18] and frequency

diversity [20–23] have also attracted significant attention.
Effective design of non-redundant sparse arrays has re-

mained a topic of great interest due to their ability to provide
the highest number of DOFs [6, 8]. Non-redundant sparse
arrays generally yield holes in the rendered difference co-
array and thus become difficult to exploit all co-array lags
for subspace-based DOA estimation methods [3, 4] which, in
the context of co-array-based DOA estimation, requires the
lags to be consecutive [24]. In contrary, recently developed
compressive sensing-based DOA estimation methods can ef-
fectively use all the co-array lags [11, 15, 25]. In addition,
exploiting Toeplitz structure-based covariance matrix interpo-
lation strategies [26–29] can further provide higher estimation
accuracy.

In this paper, we propose a novel non-redundant sparse ar-
ray design which simultaneously achieves the highest possible
number of DOFs and a desired array aperture for DOA esti-
mation. For this purpose, we first develop a zero-redundancy
sparse array design rule based on the co-array properties of the
sensor arrays. Exploiting this design rule, we synthesize non-
redundant sparse arrays which enjoy a desired array aperture
that is larger than that of an MHA. Since the DOA estimation
resolution depends on the array aperture, the proposed array
design achieves enhanced resolution while maintaining the
highest possible DOFs for the given number of sensors.

The rest of the paper is organized as follows. Signal model
and necessary preliminaries are discussed in Section II. In
Section III, we present the zero-redundancy design rule for
designing non-redundant sparse arrays. Subsequently, Section
IV presents the design approaches of non-redundant array with
a flexible aperture. Simulation results are provided in Section
V to demonstrate the superiority of the proposed array design
compared to MRA and MHA. Finally, conclusions are drawn
in Section VI.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the
N×N identity matrix. (.)T and (.)H respectively represent the
transpose and conjugate transpose of a matrix or a vector. The
operator vec(·) performs vectorization by stacking all columns
of a matrix on top of the another, and diag(x) denotes a diag-
onal matrix that uses the elements of vector x as its diagonal
elements. In addition, | · |F and | · |1 denote the Frobenius
norm and l1-norm, respectively. Moreover, E[·] is the statistical
expectation operator and ⊗ denotes the Kronecker product.

II. PRELIMINARIES

A. Signal Model
Consider a sparse sensor array consisting of N elements

such that the corresponding sensor positions are given by
p1 · λ/2, · · · , pN · λ/2, where p1, · · · , pN represent unique
non-negative integers and λ is the signal wavelength. Without
loss of generality, we consider the first sensor position as the
reference, i.e., p1 = 0. All sensor positions are sorted in an
ascending order such that pu < pu+1 for u = 1, · · · , N − 1.



Consider Q uncorrelated far-field narrowband signals im-
pinging on the sensor array from distinct angles {θ1, · · · , θQ}.
The baseband signal vector x(t) received at the sparse sensor
array can be expressed as:

x(t) =

Q∑
q=1

sq(t)a(θq) + n(t) = As(t) + n(t), (1)

where s(t) = [s1(t), · · · , sQ(t)]T with sq(t) representing the
baseband signal of the qth source. Elements in the noise vector
n(t) are considered to be circularly symmetric independent
and identically distributed complex white Gaussian random
processes which are uncorrelated from the impinging signals.
The matrix A = [a(θ1), · · · ,a(θQ)] denotes the array man-
ifold where a(θq) represents the array steering vector in the
direction of angle θq , given by:

a(θq) = [1, ejπp2 sin(θq), · · · , ejπpN sin(θq)]T. (2)

The covariance matrix Rx of the received baseband signals
x(t) is obtained as:

Rx = E[x(t)xH(t)] = ARsA
H + σ̄2

nIN

=

Q∑
q=1

σ2
qa(θq)a

H(θq) + σ̄2
nIN .

(3)

Here, σ̄2
n denotes the noise power and Rs = E[s(t)sH(t)] =

diag([σ2
1 , σ

2
2 , · · · , σ2

Q]) is the source covariance matrix with
σ2
q denoting the power of the qth source. In practice, the

covariance matrix is estimated from the sample average of M
available samples as:

R̂x =
1

M

M−1∑
t=0

x(t)xH(t). (4)

B. Difference Co-array
Vectorizing the correlation matrix Rx yields [9, 11]:

z = vec(Rx) = Ãb + σ̄2
ñi, (5)

where Ã = [ã(θ1), . . . , ã(θQ)] is the virtual array manifold
with ã(θq) = a∗(θq) ⊗ a(θq) representing the virtual array
steering vector. Moreover, b = [σ2

1 , σ
2
2 , · · · , σ2

Q]T is the vector
of signal powers and ĩ = vec(IN ). Comparing Eqs. (1) and
(5), the new vector z serves as a single-snapshot received data
vector corresponding to a source signal vector b, whereas the
noise contribution is represented by a deterministic term, σ̄2

n ĩ.
Denote P = {p1, · · · , pN} as an integer set representing the

sensor positions of the sparse array on a half-wavelength grid.
The corresponding set representing the difference co-array of
P contains all difference lags that form the virtual array and
can be expressed as the following set [11]:

D = P	 P =
⋃

∀pl,pk∈P
{pl − pk}, (6)

where 	 represents the difference co-array operator.
If the difference co-array of the sparse sensor array pro-

vides η unique co-array lags, the resulting number of achieved
DOFs is determined by (η + 1)/2. The DOFs of the sparse
arrays is directly associated with the maximum number of
sources that can be successfully resolved. Therefore, it is

highly desirable to design sparse sensor arrays which provide
a high number of co-array lags [11].

Non-redundant sparse arrays [6] are highly desirable be-
cause they provide the highest number of co-array lags for
a given number of sensors. All the non-zero co-array lags
produced by the non-redundant sparse arrays are unique.
Regardless of the sensor positions, any array consisting of N
sensors yields N entries of lag-0 self-lags which cannot be
avoided. Therefore, for a non-redundant sparse array consisting
of N physical sensors, we can achieve a total number of
N2 co-array lags among which N lags are positioned at 0.
Therefore, an N -sensor non-redundant sparse array achieves
N2 −N + 1 unique co-array lags.

III. ZERO-REDUNDANCY DESIGN RULE

In this section, we present the zero-redundancy design
rule which serves as a guideline for designing non-redundant
sparse arrays. This design rule is used in the next section to
extract non-redundant sparse arrays with a flexible aperture.
The motivation behind the flexible array aperture is that the
large aperture enables DOA estimation with a higher resolution
compared to the conventional MHA that assumes a smallest
array aperture for a given number of sensors.

Let us express the sensor positions in a non-redundant
sparse array in terms of half wavelength as a vector p =
[p1, p2, · · · , pN ]T. In order for a sparse array to be non-
redundant, the position vector p needs to render the maximum
possible number of unique lags. This condition is achieved
only if the difference co-array of the designed sensor array
contains no lag redundancies except at lag 0.

We observe in Eq. (6) that redundancies exist in the
resulting co-array if different pairs of sensor positions produce
the same co-array lags. Ignoring the redundancies at lag 0, all
co-array lags are unique only if the co-array lag generated
from a pair of sensor elements is not equal to the co-array
lag generated by another pair of sensor elements. This can be
mathematically expressed as:

pi − pj 6= pk − pl, i, j, k, l = 1, · · · , N,
i 6= j, k 6= l, j 6= l.

(7)

Note that the conditions i 6= j and k 6= l ensure that the co-
array lags at position 0 are ignored, whereas the condition j 6=
l ensures that the condition (7) is checked only for different
pair of sensor elements. Since sensor positions p1, · · · , pN are
sorted in an ascending order, the condition (7) can be modified
to obtain the following zero-redundancy design rule:

pu + 1 ≤ pu+1 and pi − pj 6= pk − pl, i 6= j, k 6= l, j 6= l,
(8)

where i, j, k, l = 1, · · · , N and u = 1, · · · , N − 1. Ensuring
the zero-redundancy condition in Eq. (8) will result in a non-
redundant sparse array.

IV. NON-REDUNDANT SPARSE ARRAY
WITH FLEXIBLE APERTURE

In this section, we exploit the zero-redundancy design rule
to design non-redundant sparse arrays with a flexible aperture.
First, we show the applicability of the zero-redundancy de-
sign rule in constructing an MHA. Subsequently, the design
procedure is modified to obtain non-redundant sparse arrays
with a flexible array aperture. Since the resolution of a sensor



array depends on the array aperture, such a flexible design can
significantly improve the DOA estimation performance of the
resulting array by enabling an extended array aperture while
ensuring that the maximum possible number of co-array lags
are achieved.

A. Design of Minimum Hole Array
First, we design MHA by constructing a non-redundant

sparse array which achieves the minimum array aperture for
the given number of sensors. Exploiting the design rule in Eq.
(8), we can formulate the following optimization problem to
achieve this objective:

min
pn∈Z+,n∈{2,··· ,N}

pN

subject to pu + 1 ≤ pu+1, u = 1, · · · , N − 1,

pi − pj 6= pk − pl, i 6= j, k 6= l, j 6= l,

i, j, k, l = 1, · · · , N.
(9)

Here, Z+ represents the set of positive integers. The above
optimization problem ensures a minimum array aperture and
achieves the maximum possible number of co-array lags which
can be produced by the given number of sensors.

Note that the difference co-arrays are symmetric in nature.
Therefore, the zero-redundancy design rule only needs to be
employed for either the positive or negative co-array lags. This
can be achieved by modifying the optimization problem (9) for
the positive side of co-array as follows:

min
pn∈Z+,n∈{2,··· ,N}

pN

subject to pu + 1 ≤ pu+1, u = 1, · · · , N − 1,

pi − pj 6= pk − pl, i > j, k > l, j 6= l,

i, k = 2, · · · , N,
j, l = 1, · · · , N − 1.

(10)
The conditions i > j and k > l in the above optimization
ensure that lags pi−pj and pk−pl are guaranteed to be positive.
Thus, the optimization problem (10) only checks the zero-
redundancy design rule for positive lags which automatically
ensures the uniqueness of negative lags due to the co-array
symmetry. The optimization problems (9) and (10) result in
the same MHA.

B. Non-Redundant Array with Desired Array Aperture
We now generalize the concept of non-redundant sparse

array design to further enjoy the important feature of flexible
apertures. Consider the desired array aperture for a non-
redundant sparse array to be at least Aflex such that Ā < Aflex,
where Ā is the array aperture of the corresponding MHA.

Fig. 1. Sensor positions for sparse arrays being compared (N = 7 sensors).

We modify the optimization problem (10) to design a non-
redundant sparse array with aperture Aflex as follows:

min
pn∈Z+,n∈{2,··· ,N}

pN

subject to pN ≥ Aflex

pu + 1 ≤ pu+1, u = 1, · · · , N − 1,

pi − pj 6= pk − pl, i > j, k > l, j 6= l,

i, k = 2, · · · , N,
j, l = 1, · · · , N − 1.

(11)
The above optimization yields a non-redundant sparse array
which has an aperture of at least Aflex. Any suitable non-
linear optimization methods like integer-based genetic algo-
rithm [30] or exhaustive search can be used to solve these
optimizations. Furthermore, references [6, 8] discuss useful
strategies to reduce the computational cost of such exhaustive
search strategies.

For DOA estimation, we utilize Eq. (5) along with LASSO
[31], resulting in the following constrained l1-norm minimiza-
tion:

r̂ = arg min
r
|Br− b|2F + η|r|1, (12)

where B is an overcomplete dictionary matrix consisting
of a grid of steering vectors given by [ã(θ1), · · · , ã(θG)]
corresponding to angles θ1, · · · , θG with G � Q. Moreover,
r is a sparse vector which represents weights to select and
add the desired steering columns from B to reconstruct the
single-snapshot vector b. Furthermore, η is the regularization
parameter which trades off between the Frobenius norm-based
fitting and the l1-norm-based sparsity measure.

V. NUMERICAL RESULTS

In this section, we compare the performance of the pro-
posed non-redundant sparse array having a flexible aperture
with the classical MRA and MHA. As an example, we consider
sparse arrays consisting of N = 7 physical sensors and
the sensor positions for the three array configurations under
consideration are plotted in Fig. 1. The non-negative co-array
weights for these arrays are also illustrated in Fig. 2. It can be
observed that the MRA achieves consecutive continuous lags.
However, it yields 4 co-array redundancies in the positive axis
of difference co-array. On the other hand, all the positive co-
array lags provided by the MHA are unique and the resulting
array achieves an aperture of 25. In comparison, the proposed
non-redundant sparse array with a flexible aperture not only
provides unique positive co-array lags but also achieves a
desired large aperture, which is considered to be Aflex = 30 in
this case. While achieving the maximum number of DOFs, the
proposed array design enables high resolution DOA estimation
due to its large aperture compared to the classical MRA and
MHA.

In order to compare the DOA estimation performance in
terms of resolving closely spaced sources, we first consider
Q = 7 sources which are uniformly distributed between −9◦

and 9◦. The input signal-to-noise ratio (SNR) is fixed at 0 dB
and 500 data snapshots are used. Fig. 3 shows the LASSO
spectra for the sparse arrays under consideration. It is evident
that both MRA and MHA fail to resolve all the closely spaced
sources. On the other hand, the proposed non-redundant sparse
array with a flexible aperture of Aflex = 30 is able to resolve



(a) Minimum redundancy array (b) Minimum hole array (c) Proposed non-redundant array

Fig. 2. Co-array weight functions of the sparse arrays under consideration (N = 7 sensor, Ā = 25, Aflex = 30).

all the sources successfully, thereby verifying its capability to
significantly improve the DOA estimation.

In the second simulation example, we increase the number
of sources to Q = 16, and the sources are uniformly spaced
between −30◦ and 30◦. All other parameters are kept the
same. It is observed in Fig. 4 that both MRA and MHA fail
to successfully resolve all the incoming sources. However,
the proposed non-redundant sparse array with a large array
aperture of Aflex = 30 successfully resolves all the sources
and provides fine DOA estimation results.

The above simulation results evidently confirm that the
non-redundant sparse array design with flexible aperture
achieves superior DOA resolution characteristics due to the

large array aperture and yields enhanced DOA estimation
performance.

VI. CONCLUSIONS

In this paper, we presented non-redundant sparse arrays
that provide the highest possible number of DOFs for a given
number of physical sensors and achieve the desired array
aperture. A zero-redundancy design rule is devised and is used
to guide the design of non-redundant sparse arrays with flexible
aperture. The rendered array designs offer high resolution
DOA estimation and outperform conventional MRA and MHA
configurations.

(a) Minimum redundancy array (b) Minimum hole array (c) Proposed non-redundant array

Fig. 3. LASSO spectra for Q = 7 sources uniformly distributed from −9◦ to 9◦ using the sparse arrays consisting of N = 7 sensors (M = 500 snapshots,
SNR = 0 dB, Ā = 25, Aflex = 30).

(a) Minimum redundancy array (b) Minimum hole array (c) Proposed non-redundant array

Fig. 4. LASSO spectra for Q = 16 sources uniformly distributed from −30◦ to 30◦ using the sparse arrays consisting of N = 7 sensors (M = 500 snapshots,
SNR = 0 dB, Ā = 25, Aflex = 30).
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