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Quadrature compressive sampling (QuadCS) is a recently
introduced sub-Nyquist sampling scheme for effective acquisition of
inphase and quadrature (I/Q) components of sparse radio frequency
signals. In applications to pulse-Doppler radars, the QuadCS outputs
can be arranged into a two-dimensional data format, in terms of slow
time and virtual fast time, similar to that by Nyquist sampling. This
paper develops a compressive sampling pulse-Doppler (CoSaPD)
processing scheme which performs Doppler estimation/detection and
range estimation from the sub-Nyquist data without recovering the
Nyquist samples. The Doppler estimation is realized through a
spectrum analyzer as in classical processing, whereas the detection is
performed using the Doppler bin data. The range estimation is
performed using sparse recovery algorithms only for the detected
targets to reduce the computational load. A low detection threshold
is used to improve the detection probability and the introduced false
targets are then removed in the range estimation stage by exploiting
the inherent target detection capability of the recovery algorithms.
Simulation results verify the effectiveness of the proposed CoSaPD
scheme, which requires only one-eighth of the Nyquist rate to achieve
similar performance to the classical processing with Nyquist samples,
provided that the input signal-to-noise ratio (SNR) is above −25 dB.
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I. INTRODUCTION

Pulse-Doppler processing has found wide applications
in civilian and military air surveillance radars due to its
capability to detect moving targets in strong clutter
environments by exploiting the distinct Doppler shifts
between the targets and the clutter [1, 2]. A common
processing scheme uses a quadrature sampling structure
[3, 4], as shown in Fig. 1, where the radar echoes are
sampled to obtain baseband inphase and quadrature
(denoted by I and Q) components. After processing the
baseband signal through a matched filter and discrete
Fourier transform (DFT), a detection threshold is applied
to detect targets with a constant false alarm rate (CFAR).
The detected target plots are then fed into the data
processor to perform tracking and other functions.

Assume that the radar echoes are downconverted into
an intermediate frequency (IF) of f0 with a bandwidth of
B. Then, the Nyquist sampling rate for the
analog-to-digital conversion (ADC) is given by [5]

fs = 4fL + 2B

4l + 1

where fL = f0 − B/2, and l is a positive integer
satisfying l ≤ ⌊

fL

/
2B

⌋
, where �·� denotes the floor

function. In wideband and ultrawideband applications,
therefore, high-rate ADC and, subsequently, intensive
processing of high dimensional sequences are required. As
a result, the current availability of the ADC technologies
limits the development of high-resolution ultrawideband
radar systems.

The recently introduced compressed sensing (CS)
[6–8], or compressive sampling, techniques bring us new
concepts to achieve sub-Nyquist data acquisition. The CS
theory exploits the signal sparsity and samples signals
closer to their information rate instead of their bandwidth.
With a high probability, CS techniques recover sparse
signals from far fewer samples or measurements than the
Nyquist samples. In radar systems, the reduced number
of samples implies a lower sampling rate requirement
and, hence, a reduced processing load. While the CS
theory is developed primarily for discrete-domain
signals, several schemes, such as random sampling [9],
random demodulation [10, 11], random-modulation
preintegrator (RMPI) [12], segmented compressed
sampling [13], and Xampling [14], have been proposed
to apply CS techniques to analog signals, known as
analog-to-information conversion (AIC). These schemes,
which generally handle signals that are sparse in the time
domain, frequency domain, or time-frequency domain, are
studied for bandpass signals without exploiting the
characteristics of radar signals by extracting the I and Q
components from the IF waveforms.

Recently, we proposed a quadrature compressive
sampling (QuadCS) scheme [15, 16] that bridges the CS
theory and the digital quadrature sampling. By assuming
the sparsity of the echo signals in the waveform-matched
dictionary [17], the QuadCS can directly extract the I and
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Fig. 1. Block schematic of classical processing.

Q components of the bandpass signals and, similar to the
random demodulation scheme, demodulate the signals
through the chipping sequences. The chipping rate,
however, is determined by the bandwidth, rather than the
highest frequency, of the bandpass signals. Therefore, the
QuadCS reduces the implementation complexity as
compared with the random demodulation scheme.

It is noted that the digital signals obtained through the
AIC are sparse and thus differ from those obtained from
the uniform Nyquist sampling. As a result, the
conventional signal processing techniques cannot be
directly applied to them for information extraction. In
general, there are two fundamental approaches to perform
the information processing. One is to first recover the
Nyquist sampling signals and then process the recovered
signals using conventional methods. It is clear, therefore,
that this type of processing does not fully take advantage
of sub-Nyquist sampling, i.e., it has to deal with a large
volume of recovered data represented in the Nyquist rate.
The other approach is to directly process the sparse
signals, which have a much smaller size, in the CS
domain. Signal processing in the CS domain, also referred
to as compressive signal processing (CSP), is attractive
due to its capability of significant reduction to the overall
processing complexity. Some fundamental works, for
example, signal detection, parameter estimation, and
filtering, have been reported in, e.g. [18, 19]. In
comparison with conventional techniques, CSP is still in
its infancy and much work should be done before it is
applied in practice.

In this paper, we discuss the applications of the
QuadCS scheme to radar applications and develop the
compressive sampling pulse-Doppler (CoSaPD)
processing approach. We are mainly concerned with
nonfluctuating moving point targets in the presence of
additive white Gaussian noise (AWGN). The application
of the proposed CoSaPD in cluttered environments is also
discussed in less detail. It is assumed that the radar
transmits repetitive pulse trains, and the target echoes are
sampled at a sub-Nyquist rate in the fast-time (range)
domain using the QuadCS. In the Doppler dimension, the
target echoes are sampled at the pulse repetition frequency.
Then, in a coherent processing interval (CPI), the sampled
data can be formulated in a matrix similar to that with the
classical sampling, as described in Section IV [1, 2].
Because of the reduced-rate intrapulse sampling, the
yielding data size becomes much smaller. The complete
target information (amplitudes, Doppler frequencies, and
ranges) is contained in the compressive data matrix, based

on which target detection and estimation can be
performed. The CoSaPD scheme consists of the
procedures of Doppler estimation, target detection, and
range estimation. As discussed in Section V, the order of
the procedures is irreversible, which is different from the
classical processing. Simulation results in Section VI show
that, when the input signal-to-noise ratio (SNR) is above
−25 dB, the CoSaPD scheme at one-eighth of the Nyquist
rate achieves a performance similar to that obtained by
classical processing methods using Nyquist sampled data.

Applications of AIC and CSP to radar systems have
been exploited in, e.g. [12, 20–27]. In [12], an
RMPI-based radar pulse receiver is reported that extracts
target information without full signal reconstruction.
Target detection from sub-Nyquist samples is considered
in [20, 21]. Target tracking and time-delay/Doppler
estimation from random measurements are respectively
studied in [22] and [23]. In [24], the reconstruction
performance of radar echoes is examined using real
experimental data. References [25–27] present different
approaches for the estimation of radar target parameters
from Xampling data. All these studies demonstrate the
effectiveness of the AIC for effective radar signal
acquisition with a significantly reduced complexity. In this
paper, we further consolidate the applicability of the AIC
to radar systems. Different from previous work, the
CoSaPD is a systematic pulse-Doppler processing scheme
based on QuadCS. Owing to the data structure parallel to
the Nyquist sampling, the CoSaPD takes some ideas from
the classical processing but with different connotations of
the QuadCS data. As such, the target detection and range
estimation adopt different techniques, as discussed in
Section IV. Other contributions of this paper include
analyses of detection performance, joint detection and
range estimation with a low detection threshold, and
extensive performance evaluations in different scenarios.

The remainder of this paper is organized as follows. In
Section II we describe the radar model and the
assumptions used in our discussion. Section III briefly
summarizes the fundamentals of the QuadCS scheme.
Section IV describes the proposed CoSaPD processing
scheme, and the target detection approach is discussed in
Section V. Simulation results are presented in Section VI.
We conclude this paper in Section VII.

We denote vectors by boldface lower case letters and
matrices by boldface upper case letters. (•)H denotes the
conjugate transpose operation. (•)l denotes the l-th column
of matrix “•”, and (•)i,j denotes the element of “•” in the
i-th row and j -th column. Re {•} and Im {•} represent the
real and the imaginary parts of “•”, respectively.

II. RADAR MODEL AND PROBLEM STATEMENT

In pulse-Doppler radar signal processing, we usually
transmit repetitive periodic pulses and perform coherent
sampling at the range bins so as to estimate desirable
target information. Consider the case of K nonfluctuating
moving point targets which are sparsely located in the

LIU ET AL.: PULSE-DOPPLER SIGNAL PROCESSING WITH QUADRATURE COMPRESSIVE SAMPLING 1217



radar’s field of view and satisfy the stop-and-hop
assumption [1]. Assume that the radar transmits a
modulated pulse train with L pulses, where the pulse
repetition interval (PRI) is T and the pulsewidth is Tb.
After downconverting the received signal to an IF of f0,
the target echo from the k-th target corresponding to the
l-th transmit pulse can be described as

rl
k(t) = ρka(t − tk) cos[2πf0t + φ(t − tk)

+2πf d
k (l − 1)T + ϕk], t ∈ [(l − 1)T , lT ], (1)

where a(t) and φ(t) respectively represent the amplitude
and the phase of the transmitted signal, which has a
bandpass spectrum with center frequency f0 and
bandwidth B. In addition, ρk , tk , f d

k , and ϕk are the
reflecting coefficient, time delay, Doppler frequency, and
random phase shift of the k-th target, respectively. In the
presence of K targets, the received radar echo
corresponding to the l-th transmit pulse is the
superposition of their respective echoes and can be
expressed as

rl(t) =
K∑

k=1

rl
k(t) = I l(t) cos(2πf0t) − Ql(t) sin(2πf0t)

(2)
where I l(t) and Ql(t) are respectively the I and Q
components of the signal rl(t), i.e.,

I l(t) =
K∑

k=1

ρka(t − tk) cos[φ(t − tk) + ϕ′
k]

(3)

Ql(t) =
K∑

k=1

ρka(t − tk) sin[φ(t − tk) + ϕ′
k]

and ϕ′
k = 2πf d

k (l − 1)T + ϕk . Denote s̃0(t) =a(t)ejφ(t) as
the complex baseband signal of the transmitted radar
signal. Then the complex envelope s̃ l(t) of rl(t) is given by

s̃ l(t) = I l(t) + jQl(t) =
K∑

k=1

ρ̃l
k s̃0(t−tk) (4)

where ρ̃l
k=ρk exp[j(2πf d

k (l − 1)T + ϕk)].
The target information, characterized by tk , f d

k , and
ρk , is completely contained in the complex baseband
envelope s̃ l(t) , l = 1, 2, · · · , L. In the radar signal
processing, we usually sample rl(t) in (2) by the
quadrature sampling scheme and then perform the analysis
to obtain the target information, as shown in Fig. 1. On the
other hand, this paper studies the estimation of target
information from the sub-Nyquist QuadCS data.

To simplify the analysis without loss of generality, we
assume that the radar is operated in an unambiguous
time-frequency region, i.e., |fd | < 1/2T and tk < T , and
that the target remains in a range bin and keeps a constant
velocity in a CPI.

In practical scenarios, the received radar signal
inevitably contains noise and clutter in addition to the

target echoes.1 Among various noise sources, thermal
noise is nominally dominant. Clutter is often present due
to echoes from volume or surface scatterers [28]. In our
study, we assume that the noise is AWGN and the surface
clutter is Rayleigh distributed in amplitude and obeys the
two-sided exponential law in Doppler spreading. Then, the
received radar signal corresponding to the l-th transmitting
pulse is given by

rl(t) =
K∑

k=1

rl
k(t) + n(t) + c(t), t ∈ [(l − 1)T , lT ], (5)

where n(t) is the bandlimited noise with power spectrum
density N0/2 and bandwidth B, and c(t) is
Rayleigh-distributed clutter with an average clutter power
of ρ2

c . Define the received SNR for the k-th target as

SNRIN
k =

1
Tb

∫ lT

(l−1)T

∣∣rl
k(t)

∣∣2
dt

N0B
. (6)

We can obtain that SNRIN
k = |ρk |2

N0B
under the

assumption of unit transmit power. Similarly, the received
signal-to-clutter ratio (SCR) can be defined for the k-th
target as SCRIN

k = |ρk |2
ρ2

c
.

In the rest of the paper, we consider the case of target
echoes contaminated only by the thermal noise n(t). The
effects of clutter are analyzed in Section IV and simulation
results are provided in Section VI.

III. FUNDAMENTALS OF QUADRATURE
COMPRESSED SENSING

Now we introduce the QuadCS scheme that performs
sub-Nyquist sampling of the received radar signal as
expressed in (5). Different from the system in [15, 16],
this work takes the Doppler into account in the echo
model. To simplify the notation, we consider the received
signal, denoted as r(t), in a single pulse interval.

We first consider the noise-free case. In radar
applications, because the transmit waveforms are known
in advance, a natural choice of the dictionary is to use
entries that are matched with the transmit waveforms [17].
For baseband radar CS processing with transmit waveform
s̃0(t) of bandwidth B, the waveform-matched dictionary
consists of time-delayed versions of s̃0 (t) at all integral
multiples of τ0 = 1

/
B, i.e., {ψ̃n(t)|ψ̃n(t) = s̃0(t − nτ0),

n = 0, 1, · · · , N − 1}, where N = ⌈
T

/
τ0

⌉
is the size of

the dictionary, with �·	 denoting the ceiling function. As
such, the dictionary discretizes the observation time period
T with resolution τ0 = 1/B. This discretization of the
time delay is justified by the fact that the time resolution
of the bandlimited signal s̃0 (t) is 1

/
B.

Assume that the target delays are located at the integral
multiples of τ0 = 1

/
B, i.e., tk ∈ {0, τ0, · · · , (N − 1) τ0}.

Given the waveform-matched dictionary, the complex

1 Unintentional electromagnetic interference and intentional jamming are
out of the scope of our discussion.
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Fig. 2. Structure of QuadCS system.

envelope s̃ (t) in (4) can be represented as

s̃ (t) =
N−1∑
n=0

ρ̃nψ̃n (t), (7)

where ρ̃k is the target reflection coefficient that takes a
nonzero value at delay tk . For K 
 N , s̃ (t) is said to be
K-sparse in the waveform-matched dictionary. The
sparsity level K exactly equals to the number of targets.

The QuadCS system is shown in Fig. 2, which consists
of two subsystems: a sub-Nyquist sampling subsystem and
a quadrature demodulation subsystem. In the first
subsystem, the received radar signal r(t) is modulated by a
random chipping sequence p (t) of ±1s, which alternates
between values at or above the Nyquist rate of the
baseband signal. The mixer operation spreads the
baseband signal content to occupy the full spectrum of
p (t). Then, the mixed output is filtered by a bandpass
filter hbp (t) with a center frequency f0 and bandwidth
Bcs 
 B. The filter output yields a compressive bandpass
signal, expressed as

y (t) =
∫ ∞

−∞
hbp (τ ) p (t − τ ) r (t − τ ) dτ

= Re
{
s̃cs (t) ej2πf0t

}
(8)

where

s̃cs (t) =
∫ +∞

−∞
hbp (τ ) e−j2πf0τp (t − τ ) s̃ (t − τ ) dτ (9)

is the compressive complex envelope, with Ics (t)
= Re {s̃cs (t)} and Qcs (t) = Im {s̃cs (t)} denoting the
compressive I and Q components, respectively. The filter
output y(t) is then sampled by a sub-Nyquist ADC to
generate a low-rate sequence y [k]. The sampling rate is
set according to the bandpass sampling theorem as
f cs

IF = (4fL + 2Bcs)
/

(4l + 1), where fL = f0 − Bcs

/
2,

and l is a positive integer satisfying l ≤ ⌊
fL

/
2Bcs

⌋
.

The second subsystem is to extract digital compressive
I and Q sequences from the sub-Nyquist sampling
sequence y [k]. Its operation is the same as in classical
quadrature sampling [3]. Because of the down-sampling
operation, the rate of the digital compressive I and Q
sequences Ics [m] = Ics (mTcs) and Qcs [m] = Qcs (mTcs)
is half that of y [k], i.e., Tcs = 2

/
f cs

IF . In the observation
interval T , we obtain M = ⌊

T
/
Tcs

⌋
complex samples

s̃cs [m] = Ics [m] + jQcs [m], or 2M compressive samples
of I and Q components, from s̃cs (t), which are much less
than 2BT as required by the digital quadrature
demodulation.

Although the QuadCS system works on analog
bandpass signals, its output scs [m] can be characterized as
a linear combination of the elements of sparse coefficient
vector ρ̃ = [ρ̃0, ρ̃1, · · · , ρ̃N−1]T . Substituting (7) into (9),
we have

s̃cs (t)

=
N−1∑
n=0

ρ̃n

∫ +∞

−∞
hbp (τ ) e−j2πf0τp (t − τ ) ψ̃n (t − τ ) dτ

(10)

and the corresponding samples are expressed as

s̃cs [m] =
N−1∑
n=0

ρ̃n

∫ +∞

−∞
hbp (τ ) e−j2πf0τp (mTcs − τ )

× ψ̃n (mTcs − τ ) dτ. (11)

In the discrete CS framework, we have

s̃cs = M̃ρ̃ (12)

where s̃cs = [s̃cs [0] , · · · , s̃cs [M − 1]]T and
M̃ = [

M̃mn

] ∈ C
M×N with

M̃mn =
∫ +∞

−∞
hbp (τ ) e−j2πf0τp (mTcs − τ )

× ψ̃n (mTcs − τ ) dτ. (13)

The recovery of the sparse coefficient vector ρ̃ can be
achieved through the following constrained l1-norm
optimization [29] {

min ‖ρ̃‖1

s.t. s̃cs = M̃ρ̃
(14)

In the above expression, matrix M̃ is referred to as the
system measurement matrix. For radar signals with a flat
spectrum, all the columns of matrix M̃ are approximately
mutually orthogonal and have nearly the same column
energy 2TbB

2
cs/B under the assumption of unit transmit

power. Therefore, the k-th target power after the output of
the QuadCS system becomes 2 |ρk|2 Bcs/B.

When the received signals are contaminated by noise,
the QuadCS samples in (11) are corrupted by compressive
noise samples ñcs [m], which are obtained by passing the
received noise n(t) through the QuadCS system as
described above. For the additive white and bandlimited
Gaussian noise n(t) with power spectrum density N0

/
2

and bandwidth B, the compressive noise samples ñcs [m]
are an independent and identically distributed (IID)
complex Gaussian process with zero-mean and variance
2N0Bcs [30]. Then, the output SNR of the QuadCS system
for the k-th target, denoted as SNRCS

k , stays intact.
Because the QuadCS is a linear system, (12) becomes

s̃cs = M̃ρ̃ + ñcs (15)
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Fig. 3. Notional two-dimensional data matrix generated by (a) QuadCS
system and (b) classical sampling.

in the noisy case, where ñcs = [ñcs[0], · · · , ñcs[M − 1]]T .
The reconstruction of the sparse coefficient vector ρ̃ in this
case can be obtained as the solution of the following
optimization problem [31],

min
ρ̃

1

2

∥∥s̃cs − M̃ρ̃
∥∥2

2 + l ‖ρ̃‖1 , (16)

where l > 0 is the regularization parameter which is used
to tradeoff between the sparsity and the least-squares
errors.

There are a wide variety of approaches to solve (14)
and (16), including the greedy iteration algorithms [32, 33]
and convex optimization algorithms [31, 34] (see [35] for
a review). In the simulation study, we use basis pursuit
denoising (BPDN) [31] to estimate the sparse vector ρ̃.

IV. PULSE-DOPPLER PROCESSING IN QUADCS
DOMAIN

In this section, we discuss the extraction of the target
range and Doppler frequency information from the data
expressed in (15).

Consider a CPI consisting of L periodic pulses and
denote the output of the QuadCS system from the l-th
echo as

s̃l
cs = M̃ρ̃

l + ñl
cs . (17)

Define S̃cs = [s̃1
cs, s̃2

cs, · · · , s̃L
cs], �̃ = [

ρ̃1, ρ̃2, · · · , ρ̃L
]
,

and Ñcs = [
ñ1

cs, ñ2
cs, · · · , ñL

cs

]
. Then, the sampled data of

the L consecutive echoes can be expressed in a matrix
form as

S̃cs = M̃�̃ + Ñcs . (18)

Fig. 3(a) illustrates the two-dimensional data matrix
generated by the QuadCS system, whereas Fig. 3(b)
depicts that by the classical sampling [1, 2] for
comparison. It is clear that the sub-Nyquist samples
obtained by the QuadCS system correspond to the fast
time samples (range bins) in the classical sampling. As
such, the sub-Nyquist samples are referred to as the virtual
range bins for convenience. The samples in each column
are obtained by successively sampling the echoes from a
single pulse, yielding consecutive virtual range bins. Each
complex element of a column represents both real and
imaginary (Ics and Qcs) components for one virtual range

bin. Consequently, each row represents a series of
measurements from the same virtual range bin over
consecutive pulses. Because of the reduced sub-Nyquist
rate in the range dimension, the data size in the range
dimension becomes much smaller than that obtained by
the classical fast-time Nyquist sampling.

As can be seen from (18), the target information is
completely characterized by the N × L data matrix �̃. In
fact, matrix �̃ degenerates to the classical data matrix
when M̃ = IN . Then, �̃ can be obtained by estimating the
target information similar to traditional approaches.
However, because the available data is an M × L

underdetermined data matrix S̃cs with M 
 N , it is
impossible to directly obtain the target information from
S̃cs . Ideally, each column of �̃ is sparse because the
number of targets is much smaller than that of the range
bins or the dictionary size. In this case, we can obtain a
sparse estimate of �̃ in (18) by solving the following
l1-norm optimization problem,

min
ρ̃l

1

2

∥∥∥s̃l
cs − M̃ρ̃

l
∥∥∥2

2
+ λ

∥∥ρ̃l
∥∥

1 l = 1, 2, · · · , L. (19)

The target information can be estimated from the
estimated �̃ by applying DFT to its rows. In practice, due
to the influence of noise and clutters, we can hardly obtain
the exact information of the targets and may yield false
targets. In addition, the direct solution of (19) requires a
high computational load and, thereby, may not be feasible
for real-time processing.

It is seen that each row of the data matrix S̃cs

represents a series of measurements over successive pulses
from the same virtual range bin. Therefore, the target
Doppler frequencies can be estimated by the spectral
analysis of the slow-time data for each virtual range bin. A
simple technique is to conduct the DFT. Denote F(•) as
the DFT of “•” in row vectors. We have

F(S̃cs) = F(M̃�̃) + F(Ñcs)

= M̃F(�̃) + F(Ñcs) (20)

Each element of the matrix F(S̃cs) is a Doppler
spectrum sample corresponding to the virtual range bin
and the frequency bin. As such, the Doppler spectrum
samples can be used for target detection, i.e., determine
whether a target is present at the virtual range bin and the
Doppler bin.

The DFT acts as a matched filter for slow-time
samples in the assumed scenarios. After DFT processing,
the power of the k-th target becomes 2L2 |ρk|2 Bcs/B and
the noise variance is 2LN0Bcs . As such, the yielding SNR
for the k-th target SNRDFT

k is improved from the received
SNRIN

k by a factor of L. From the point of view of target
detection, we can further improve the detection
performance by matched filtering the sub-Nyquist samples
corresponding to each Doppler bin. The details are
discussed in the next section.

The detection process, however, only detects the
existence of targets in a specific Doppler bin and does not
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Fig. 4. Block schematic of CoSaPD processing.

Fig. 5. Mathematical procedure of CoSaPD processing.

reveal the number of targets and their corresponding
ranges. Note that the sparsity of F(�̃) can be greatly
enhanced even for practically nonsparse �̃ after
performing the DFT. Therefore, for the underdetermined
data S̃cs , we can estimate the number and the respective
ranges of the targets by obtaining the sparse solution for
each column of (20). Such estimation, however, requires a
high computational load because the sparse estimation is
performed for each column. Since we have already
detected the targets from the Doppler spectrum samples,
we only need to estimate the target ranges for the specific
Doppler bins with detected targets. In this way, the
computational load can be significantly reduced.

The block schematic of the processing steps involved
in the CoSaPD processing is given in Fig. 4, and the
mathematical procedure corresponding to the processing
blocks is given in Fig. 5. It should be noted that the
CoSaPD scheme must estimate the target velocities first
and the ranges afterward, and this order cannot be
reversed. The details of the detection process are depicted
in the next section.

We now briefly discuss the Doppler estimation in the
presence of clutter. Different from thermal noise, the
clutter has a colored power spectrum as determined by the
radar and the operation environment [1, 2, 28]. For a
stationary transceiver, the clutter spectrum is around the
zero Doppler frequency. In this case, as in classical
pulse-Doppler processing, the CoSaPD scheme can isolate
the clutter from the moving target. If the target is separable
from the clutter spectrum, its detection is affected only by
the thermal noise, but not the clutter. If the target is in the
clutter-dominated area, on the other hand, the target is
usually obscured by the clutter and cannot be detected. In
this case, the Doppler spectrum samples in the
contaminated area are simply discarded. However,
because of clutter sidelobes, clutter power may spread
over the entire Doppler frequencies, even though its power
may be small at high Doppler frequencies. To reduce the
sidelobe effects, we can add a data window [36] to weight
the slow-time data for each virtual range bin prior to
computing the DFT. With the windowed data, the clutter
has a negligible effect on the estimation of targets as
demonstrated by the simulated results in Section VI.

V. THRESHOLD DETECTION AND ITS
PERFORMANCE

This section describes the threshold detection used in
the proposed CoSaPD processing and analyzes its
performance.

Consider the l-th column which represents the Doppler
bin data derived from (20) as

(
F(S̃cs)

)l = M̃
(
F(�̃)

)l + (
F(Ñcs)

)l
. (21)

Our objective is to detect if there exists one or more
targets in the l-th Doppler bin, i.e., to determine if the

vector
(
F(�̃)

)l
is a nonzero vector based on

(
F(S̃cs)

)l
.

First, we assume that the received noise variance is
known. For the data expressed in (21), we perform the
following matched filtering to further enhance the
detection performance,

M̃H
(
F(S̃cs)

)l = M̃HM̃
(
F(�̃)

)l + M̃H
(
F(Ñcs)

)l
, (22)

which corresponds to the “matched filtering” operation in

Fig. 4. For convenience, we define x̃ = M̃H
(
F(S̃cs)

)l
,

ỹ = M̃HM̃
(
F(�̃)

)l
, and w̃ = M̃H

(
F(Ñcs)

)l
. Then, (22)

can be simplified as

x̃ = ỹ + w̃. (23)

Note that the noise term w̃ in (23) is Gaussian but not
independent, as a result of the matched filtering. As
illustrated in Section III, matrix M̃ is approximately
column-by-column orthogonal. Therefore, we can still
assume that w̃ is an IID Gaussian process. For the matched
filter output expressed in (22), the peak power of the k-th
target is 4L2 |ρk|2 T 2

b B4
cs/B

2 and the noise variance is
4LN0TbB

3
cs/B. As such, the SNR of the k-th target after
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Fig. 6. Block schematic of detection process for Doppler bin.

the matched filtering, SNRMF
k , becomes TbBcsL times the

received SNRIN
k .

The detection problem is to detect the targets from
data x̃. The binary detection problem of each element x̃n,
1 ≤ n ≤ N , can be formulated as

H0 : |x̃n| = |w̃n|
H1 : |x̃n| = |ỹn + w̃n|

(24)

The detection probability and false alarm probability
are respectively given by

P n
D =

∫ ∞

TD

f|x̃n||H1 (|x̃n| |H1)d |x̃n| , (25)

P n
F =

∫ ∞

TD

f|x̃n||H0 (|x̃n| |H0)d |x̃n| , (26)

where TD is the detection threshold, and f|x̃n||H1 (|x̃n| |H1)
and f|x̃n||H0 (|x̃n| |H0) are the probability density functions
(pdfs) of |x̃n| respectively for the cases when a target is
present and absent. Then, the false alarm probability and
the detection probability of ỹ are respectively given by

PF ≈ 1 −
N∏

n=1

(1 − P n
F ), (27)

PD ≈ 1 −
N∏

n=1

(1 − P n
D). (28)

Denote σ 2 = 2LN0TbB
3
cs/B and notice that |w̃n|

follows a Rayleigh distribution with mean
√

π
/

2σ and

variance (4 − π)σ 2
/

2. Under hypothesis H0, i.e., a target
is absent, the conditional pdf of |x̃n| is given by

f|x̃n||H0 (|x̃n| |H0) = |x̃n|
σ 2

exp

(
−|x̃n|2

2σ 2

)
. (29)

Under hypothesis H1, i.e., when a target is present,
x̃n = ỹn + w̃n is complex Gaussian distributed with mean
ỹn and variance 2σ 2. Then, the pdf of |x̃n| follows the
Rician distribution, expressed as

f|x̃n||H1 (|x̃n| |H1)

= |x̃n|
σ 2

exp

(
−|x̃n|2 + |ỹn|2

2σ 2

)
I0

( |x̃n| |ỹn|
σ 2

)
, (30)

where I0(•) is the modified Bessel function of the first
kind [37].

With the known noise power σ 2, the Neyman-Pearson
optimal detector can be derived from the likelihood ratio
test as

f|x̃n||H1 (|x̃n| |H1)

f|x̃n||H0 (|x̃n| |H0)
= exp

(
−|ỹn|2

2σ 2

)
I0

( |x̃n| |ỹn|
σ 2

)
H1
>
<

H0

l.

(31)
Because I0(•) is a monotonically increasing function,

(31) is equivalent to the following simpler expression,

|x̃n|
H1
>
<

H0

l0σ = TD, (32)

where l0 = √−2 ln(P n
F ) is the scale factor used to control

the false alarm rate. Thus, we can derive the joint detector
for a vector data x̃ as

N∑
n=1

u (|x̃n| − l0σ )
H1
>
<

H0

1, (33)

where u (•) represents the unit step function. The detection
process for a Doppler bin is shown in Fig. 6.

From (26), (29), and (32), we can derive
P n

F = exp(−l2
0/2). Then, the false alarm probability is

obtained as

PF ≈ 1 − (
1 − exp(−l2

0/2)
)N

. (34)

We are unable to derive a closed-form expression of
the detection probability PD . However, it is noted that the
processing gain of the CoSaPD detector is TbBcsL, which
is smaller than the gain of classical processing, T BbL.
Therefore, it is expected that the performance of the
proposed detector will be inferior when compared with the
classical detector at the low SNR region.

After target detection, the CoSaPD processing
conducts range estimation through the sparse recovery
algorithms, as discussed in the previous section. As is well
known, an inherent characteristic of the sparse recovery
algorithms [38, 39] is to detect the nonzero elements in a
sparse vector. To improve the system detection
performance, we may set a low detection threshold for
each Doppler bin. However, a low threshold will increase
the false alarm probability and thus may introduce false
targets. Nevertheless, false targets can be removed through
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the detection process in the recovery algorithms. Because
the sparse recovery algorithms strive for a minimum
number of nonzero cells at its output, from the system
point of view, the false alarm probability of the radar
system does not increase despite the low detection
threshold. This observation is verified later through
simulations.

In practice, it is impossible to know the noise
parameter σ in advance. To maintain a CFAR, therefore,
we should estimate parameter σ so as to determine an
adaptive threshold for detection. Following the
assumptions on the measurement matrix M̃, it is seen that
the noise matrix M̃HF(Ñcs) is IID, and the absolute value
of each element |(M̃HF(Ñcs))i,j |, 1 ≤ i ≤ N , 1 ≤ j ≤ L,
follows the Rayleigh distribution. As such, the maximum
likelihood estimate of σ is simply the average of the
available data [40], expressed as

σ̂ =
√

2

π

∑
(i,j )∈


∣∣∣(M̃HF(Ñcs)
)
i,j

∣∣∣
|
| (35)

where 
 is the set consisting of all available i and j , and
|
| is its cardinality. For sparse targets, the accumulative
strength of the signals

∑
(i,j )∈


|(M̃HM̃F(�̃))i,j | is much

smaller than that of the noise
∑

(i,j )∈


|(M̃HF(Ñcs))i,j |, and

the following approximation holds when |
| is large:
∑

(i,j )∈


∣∣∣(M̃HF(Ñcs)
)
i,j

∣∣∣
|
| ≈

∑
(i,j )∈


∣∣∣(M̃HF(S̃cs)
)
i,j

∣∣∣
|
| . (36)

In the simulation study, we set |
| = NL and the
estimated σ̂ becomes

σ̂ ≈
√

2

π

N∑
i=1

L∑
j=1

∣∣∣(M̃HF(S̃cs)
)
i,j

∣∣∣
NL

, (37)

and the detection threshold is given as TD = l0σ̂ .

VI. SIMULATIONS

In this section, we present the simulation performance
of the proposed CoSaPD processing and compare it with
classical processing [1, 2] and direct processing by (19).
Subsection VI-A introduces the simulation scenarios.
Subsections VI-B and VI-C respectively provide
simulated results of the detection and estimation
performance in an AWGN environment. The effects of
clutter are examined in Subsection VI-D.

A. Simulation Scenarios

It is assumed that the radar transmits a linear
frequency modulation pulse train with carrier frequency
fc = 10 GHz, signal bandwidth B = 200 MHz,
pulsewidth Tb = 10−5 s, and PRI T = 10−4 s. The CPI
consists of L = 100 pulses. For the assumed parameters,
the unambiguous target ranges and Doppler frequencies
are 1500 m ∼ 3466.5 m and −5 KHz ∼ 5 KHz,

Fig. 7. Distribution of averaged Gram matrix M̃HM̃.

respectively. The range resolution is 0.75 m and the
Doppler resolution is 0.1 KHz.

For the QuadCS system, the chipping sequence p (t) is
generated by random ±1s with rate 1/B and the bandpass
filter is set to be an ideal one with bandwidth Bcs . Two
bandpass filters with Bcs = 50 MHz and Bcs = 25 MHz
are respectively considered. For the two filters, the
sampling rates are one-fourth and one-eighth of the
Nyquist rate, respectively. The basis BPDN algorithm [31]
is used for the sparse target recovery.

A flat power spectrum is assumed in the simulated
radar signal. The QuadCS measurement matrix M̃ is
approximately column-by-column orthogonal. Fig. 7
shows the distribution of the averaged Gram matrix M̃HM̃
over 1000 independent trials for Bcs = 25 MHz. The
maximum off-diagonal element of the Gram matrix is
0.015, thus clearly verifying the reasonableness of the
assumption.

B. Detection Performance

Assume three targets with the same SNR. The target
delays and the Doppler frequencies are randomly set in the
unambiguous region. We present three simulation
examples. For the first two examples, the delays and the
Doppler frequencies are on the resolution grids. For the
third example, the delays and the Doppler frequencies are
arbitrarily set. To examine the detectability of the multiple
targets, their Doppler frequencies are set to fall in the
same Doppler bin. All results are obtained by averaging
over 1000 independent trials.

First, we show that the CoSaPD detector achieves a
CFAR in a Doppler bin. Fig. 8 shows the variations of the
false alarm probability versus the scale factor for different
values of SNR when Bcs = 25 MHz. It is clear that the
change of the noise power does not affect the false alarm
probability for a specified scale factor, which is consistent
with the theoretical result given in (34). The same
conclusion can be drawn for Bcs = 50 MHz.

Next, we examine the receiver operating characteristic
(ROC) of the CoSaPD detector. Fig. 9 compares the
averaged ROC curves obtained by the CoSaPD and the
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Fig. 8. False alarm probability versus scale factor.

Fig. 9. ROC of CoSaPD detector.

classical processing. It is seen that the performance of the
CoSaPD detector is inferior to the classical detector due to
the decrease of the SNR gains. In the Nyquist-rate case,
after the matched filtering and DFT processing, the
processing gain can achieve TbBL, while the QuadCS
system only realize a gain of TbBcsL. As the bandpass
width Bcs increases, the processing gain TbBcsL increases
and then the detection performance is enhanced. In the
simulated example, processing gains of 53 dB, 47 dB, and
44 dB are respectively achieved for classical processing,
CoSaPD detector with Bcs = 50 MHz, and that with
Bcs = 25 MHz. The yielding SNRs for detection are
23 dB, 17 dB, and 14 dB, respectively, implying an SNR
reduction of 6 dB and 9 dB for the CoSaPD with
Bcs = 50 MHz and Bcs = 25 MHz cases as compared
with the classical processing. For Bcs = 50 MHz, i.e.,
when the compressive sampling rate equals one-fourth of
the Nyquist rate, the detection performance of the
CoSaPD detector is close to that of the classical detector
in the simulated range of PF .

As discussed in the previous section and noted in
Fig. 9, we can choose a high false alarm probability to
increase the detection probability. Reduction of false
targets can be achieved in the recovery stage of the target
range following the detector, because the sparse recovery
algorithm has the inherent target detection ability [38, 39].

Fig. 10. System false alarm probability versus detector false alarm
probability.

Fig. 11. Detection performance versus SNR.

Fig. 10 shows the false alarm rate of the system after the
recovery stage versus that of the detector. It is clear that
although the detector has a high false alarm probability in
the detection stage, the recovery algorithm can keep the
system having a low false alarm probability. Processing
the system detection in this way will slightly increase the
computational burden in the range estimation.

Fig. 11 further shows the detection performance with
respect to the SNR for the case of PF = 10−2. It is seen
that even at a low SNR of −30 dB, the CoSaPD detector
can approach the performance of the classical detector
with the data rate being only one-eighth of the Nyquist
rate.

Finally, we consider a realistic scenario in which the
ranges and Doppler frequencies of the targets are
continuous and thus may not fall on the resolution grids.
Fig. 12 shows the ROC in this case. In comparison with
Fig. 9, the detection performance degrades. It is noted that
when a target is not on Doppler bin grids, the detected
target energy is from the Doppler leakage and thus is
smaller than that of the target on the Doppler bin. When
the target is off from the range bin grids, the measurement
matrix contains errors, which will degenerate the matched
filter in (22). In this case, the detection performance is
compromised as compared with the case that the targets
are on the resolution grids.
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Fig. 12. ROC in realistic case.

Fig. 13. Rates of successful estimation for different methods.

C. Estimation Performance

After detecting the existence of the targets in a specific
Doppler bin, we estimate the corresponding target ranges.
The CoSaPD method is depicted in the last stage of Fig. 5
and is realized through the sparse recovery algorithms. The
rate of successful estimation is used as the performance
metric. When the targets are on the resolution grids, a
successful estimation refers to the correct estimation of
both ranges and Doppler frequencies. On the other hand,
when the target ranges and Doppler frequencies are
chosen randomly at the unambiguous region, a successful
estimation is declared if both differences between the
estimated and true ranges and Doppler frequencies are
smaller than half of the respective cell resolution.

In the simulation studies, we consider five targets with
the same SNRs. To examine the discrimination capability,
we assume that the first two targets belong to the same
range bin, the other two targets belong to another Doppler
bin, and the fifth target is chosen to have random range
and Doppler. All results are obtained by averaging over
1000 independent trials.

First, we depict the estimation performance when all
five targets are set on the discrete grids. Fig. 13 shows the
rates of successful estimation with respect to the input
SNR. For the CoSaPD method, the false alarm probability
is set as PF = 10−2 with l0 = 5. It is seen that the

Fig. 14. Times of recovery algorithms required for range estimation.

Fig. 15. Rate of successful estimation in practical scenario.

CoSaPD method greatly outperforms the direct method
and achieves the performance of the classical method even
at a low SNR of −25 dB and the sampling rate is only
one-eighth of the Nyquist rate. The performance
improvement of the CoSaPD method is due to the fact that
the range estimation is performed in the Doppler domain
in which the SNR is enhanced because of the DFT
processing. Setting PF = 10−2 will result in a high false
alarm probability in the detection stage. However, the
setting does not affect the system detection.

Another advantage of the CoSaPD method over the
direct processing method is the reduction of the
computational burden. For the simulated parameters, the
direct method needs to execute the recovery algorithms for
100 times, whereas the CoSaPD method only needs at
most 12 times, as shown in Fig. 14.

Next, we present the simulated performance when the
target ranges and Doppler frequencies are randomly set in
the unambiguous region. Fig. 15 shows the rates of
successful estimation. Compared with Fig. 13, the
estimated performance degrades. However, the CoSaPD
method is more applicable to realistic situations than the
direct processing method. As discussed in Section IV, the
direct processing method first estimates the complex
amplitudes of the targets from the compressed data. The
estimation may introduce errors in both amplitude and

LIU ET AL.: PULSE-DOPPLER SIGNAL PROCESSING WITH QUADRATURE COMPRESSIVE SAMPLING 1225



Fig. 16. Estimation performance of smaller target.

phase. In particular, the phase error will greatly affect the
Doppler estimation in the DFT operation, thus causing
performance degradation to the direct processing method.
For the CoSaPD method, the Doppler estimation is
performed in the Doppler domain data, which is obtained
from the DFT of the compressive data. As such, it yields a
robust range estimate unaffected by the Doppler phase.

Finally, we simulate the performance of estimating a
weak target that is close to a strong one. In the classical
processing, the output of the matched filtering will have
sidelobes in range, making the weak target obscured by
the sidelobes of the strong target. We assume that the two
targets are present in the same Doppler bin and the weak
target is randomly set in the first sidelobe of the strong
target. Fig. 16 shows the estimation performance, where
SNRIN

1 and SNRIN
2 denote the SNRs of the strong and the

weak targets, respectively. It is observed that the CoSaPD
method outperforms the classical method when the two
targets have a large SNR difference.

D. The Effects of Clutter

We now demonstrate the performance of the CoSaPD
processing in the presence of surface clutter. The received
target signals are contaminated by both noise and clutter
as described in (5). The signals and noise are set as in
Fig. 13 and the simulated windblown ground clutter is
added. The ground clutter is assumed to be Rayleigh
distributed in amplitude and obeys the following
two-sided exponential law in Doppler spreading

Sc(v) = β

2
exp(−β |v|), − ∞ < v < ∞,

where β corresponds to the wind conditions. It was shown
in [28] that the Doppler model matches the measured
shapes of windblown ground clutter Doppler spectra much
more closely than by the Gaussian or power-law
approximations. In the simulation, we choose β = 4.3,
which corresponds to a wind condition of about
96.6 km/hr. The SCR is −40 dB. To reduce the effect of
clutter, a Taylor window, which yields 10 nearly
constant-level sidelobes adjacent to the mainlobe with a

Fig. 17. Rates of successful estimation in clutter for discarding (a) 5
Doppler bins and (b) 13 Doppler bins.

peak sidelobe level of −70 dB relative to the mainlobe
peak, is used before DFT processing.

As discussed in Section IV, the Doppler spectrum
samples are discarded if the targets fall in the
clutter-dominated area. We evaluate the rates of successful
estimation at different SNR levels after discarding
different Doppler bins around the zero Doppler frequency.
Fig. 17(a) and Fig. 17(b) show the simulated results after
discarding 5 and 13 Doppler bins, respectively. The effect
of the clutter is evident from Fig. 17(a). Because of clutter
sidelobe, we cannot obtain 100% successful estimation
rates for both classical and CoSaPD methods. By
discarding more Doppler bins, as shown in Fig. 17(b), we
can better remove the clutter effect on the signals with
high Doppler shifts. Fig. 18 further shows the usable
Doppler space fraction [2] versus the SNR. In the
simulations, we set one target with a randomly distributed
range bin and a variable Doppler bin. When the target is
successfully estimated, we claim the Doppler bin to be
usable. It is seen that there is sharp drop of the usable
Doppler space when the SNR is below some threshold.
This is because the recovery algorithms do not function in
such low SNRs.2 Both Fig. 17(b) and Fig. 18 indicate that

2 The l1-norm minimization algorithms in a noisy signal case yield sparse
solutions only when ‖(F(Ñcs ))l‖2

2 < ‖(F(S̃cs ))l‖2
2 [41].
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Fig. 18. Usable Doppler space fraction versus SNR.

the CoSaPD method achieves the performance of the
classical method even at an SNR of −25 dB and a data
rate of one-eighth of the Nyquist rate. This is consistent
with the observation made in Fig. 13.

VII. CONCLUSION

In this paper, we have developed a pulse-Doppler
processing scheme, termed as CoSaPD, with the
sub-Nyquist data delivered from the QuadCS system. The
scheme consists of two major procedures, Doppler
estimation/detection and range estimation, with the former
to be performed prior to the latter. Theoretical analyses
and computer simulation results verify the performance
advantages of the proposed CoSaPD approach. When
sampling at one-eighth of the Nyquist rate and for SNR
above −25 dB, the CoSaPD achieves the performance of
the classical processing using Nyquist samples.

When compared with other related schemes utilizing
CS data, the proposed CoSaPD scheme offers four
important advantages. The first one is the small size
dictionary. While other CS-based radar data processing
schemes usually use a two-dimensional dictionary by
discretizing both radar range and Doppler [23], the
CoSaPD scheme adopts a one-dimensional dictionary by
only discretizing the radar range. The second advantage is
the combination of the estimation and detection processes,
which has two advantages over separate estimation and
detection: improved detection performance and reduced
computational complexity. The third advantage is its
ability to detect weak targets nearby a strong target. The
last one is the ability to cancel the clutter echoes as in
classical processing.

In comparison with the classical processing, the
CoSaPD produces the system gain loss. As discussed in
Section V, the CoSaPD processing gain is Bcs/B times
that of the classical processing. That is, a narrow
bandwidth Bcs and, hence, a low sampling rate f cs

IF , yields
large processing gain losses. There is a trade-off between
the unacceptable loss and the sampling rate.
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