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ABSTRACT

The micro-motion characteristics of warheads have been utilized
to discriminate false warheads from true ones. To obtain accu-
rate dimensional measurements, a multiple-input multiple-output
(MIMO) radar is adopted to observe the kinetic information of the
warhead. A distributed state space model (SSM) is built and the
differences between the true and false warheads are characterized
as different system parameters of the SSM. In this paper, we extend
the locally optimal unknown direction (LOUD) detector, which has
shown its effectiveness for hypothesis testing, to the underlying
distributed detection problem, and a novel consensus-based LOUD
detector is proposed. The superior detection performance of the pro-
posed detection algorithm in identifying the true and false warheads
is verified using simulation results.

Index Terms— Ballistic warhead recognition, micro-motion,
state space model, LOUD test, broadcast-based consensus algorithm

1. INTRODUCTION

Ballistic missile defense is a critical task that attracted great atten-
tions from many countries. To break the anti-missile interceptor sys-
tem, the use of advanced false warheads in the middle course phase
is reported [1, 2]. Advanced false warheads have almost identical
shape and motion as the true ones, making their discrimination from
true ones difficult. Different micro-motion characteristics have been
exploited to identify the warheads [3]. In particular, the utilization
of a multiple-input multiple-output (MIMO) radar with distributed
antennas in observing the kinetic information of the warhead enables
data collection of the multi-dimensional warhead motion states from
multiple distinct directions [4, 5, 6]. Therefore, as compared with
traditional radars, the MIMO radar is advantageous in distinguish-
ing the micro-motion characteristics between the true and false war-
heads.

To directly utilize the available multi-dimensional observation
by MIMO radar, a discrete-time state space model (SSM), which
includes the micro-motion characteristics, is established to describe
the kinetic states of the warhead. As we will show, the difference
of micro-motion characteristics between the true and false warheads
can be reflected in the parameter matrix of the SSM. For this hypoth-
esis testing, it is shown in [7] that the LOUD detector offers desirable
performance in detecting small differences with a small processing
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delay [8, 9]. In this paper, we propose a distributed detection algo-
rithm, which is developed under the parallel configuration without
fusion center [10], based on the LOUD test and broadcast-based con-
sensus.

In networks of agents, consensus means to reach an agreement
regarding a certain quantity of interest that depends on the states of
all agents [11]. Consensus problems have been widely studied in
various fields, including distributed detection [12] and communica-
tion [13]. In the broadcast-based consensus algorithm, at every step,
one subblock will be randomly chosen to broadcast its state esti-
mates. Subblocks whose distance is within the transmission range
will update their state estimates, while the state estimates of the oth-
er subblocks will remain unchanged. At the end of the broadcast-
update process, one subblock is chosen to make a decision by the
LOUD detector according to the updated state estimations. The
experimental results show the effectiveness of the proposed method
via the comparison with the centralized processing and the distribut-
ed detection algorithm with hard-decision processing, both being
based on the LOUD detector.

The rest of this paper is organized as follows. The SSM of the
warhead flying in the middle course phase and the hypothesis testing
for warhead recognition are presented in Section 2. The consensus-
based distributed detection method is addressed in Section 3. Sim-
ulation results are given in Section 4. Finally, Section 5 provides
some concluding remarks.

We use lower-case (upper-case) bold characters to denote vec-
tors (matrices). Throughout this paper, Id represents the d× d iden-
tity matrix, 0d denotes the d × d matrix with all entries equal to 0,
and 1d stands for a d-dimensional all-one column vector. The sym-
bol (·)† denotes transpose, and | · | stands for the set cardinality. In
addition, RN×K represents the complete set ofN×K real matrices.
x ∼ N (a, b) implies that the random variable x follows a Gaussian
distribution with mean a and variance b.

2. SYSTEM MODEL

2.1. State Equation

Consider the scenario where a warhead is flying in the middle course
phase. The compound motion of warhead can be decomposed into
translation and micro-motion [14]. Refer to the motion model shown
in Fig. 1. We mainly focus on the movement of the dominating scat-
terer Q, which undergoes both translation and micro-motion. To
explicitly analyze the micro-motion of the main scatterer, a refer-
ence coordinate systemXY Z centered at the intersection of the geo-
metric symmetry axis and the precession axis of the target, initially
located at (x0, y0, z0) inUVW , is employed. Assume that the refer-
ence coordinate system, parallel to the radar coordinate system, has
the same translation as the warhead. The warhead, initially located at
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Fig. 1. Warhead movement in radar UVW and reference XYZ coor-
dinate systems.

(x0, y0, z0), flies with initial translational velocity (vx,0, vy,0, vz,0)
and acceleration (gx, gy, gz) in UVW . Let [qx(t), qy(t), qz(t)] and
[q′x(t), q′y(t), q′z(t)] denote the instantaneous micro-motion position
and velocity of Q at time t in XY Z. The instantaneous position
[x(t), y(t), z(t)] and the instantaneous velocity [vx(t), vy(t), vz(t)]
of Q at time t in UVW can be described by the kinetic equation as
follows [14][15]

x (t) = x0 + vx,0t+ 0.5gxt
2 + qx (t) ,

y (t) = y0 + vy,0t+ 0.5gyt
2 + qy (t) ,

z (t) = z0 + vz,0t+ 0.5gzt
2 + qz (t) ,

vx (t) = vx,0 + gxt+ q′x (t) ,
vy (t) = vy,0 + gyt+ q′y (t) ,
vz (t) = vz,0 + gzt+ q′z (t) .

(1)

Define a state vector which contains the instantaneous position,
velocity and micro-motion position of the warhead

x (t) = [x (t) , y (t) , z (t) , vx (t) , vy (t) , vz (t) ,

qx (t) , qy (t) , qz (t)]† . (2)

According to [7], the continuous-time state equation that describes
the dynamic movement, including the micro-motion behaviors, of
the warhead can be expressed as

x′ (t) = Rtx (t) + u(t), (3)

where x′(t) = ∂x(t)/∂t and Rt is the state transition matrix
determined by the micro-motion characteristics of the warhead [7].
Denote the sampling interval by T (T > 0), uk = u(kT ) and
xk = x(kT ), the noisy discrete-time state equation can be given by

xk+1 = Fk+1xk + Gk+1uk + wk+1 (4)

where
Fk+1 = eRtT , (5)

Gk+1 =

∫ T

0

eRtτdτ. (6)

In addition, uk = [0, 0, 0, gx, gy, gz, 0, 0, 0]† denotes the input con-
trol vector, and wk+1 is the additive noise vector which is assumed
to be white Gaussian with zero mean and covariance matrix Σw, i.e.,
wk+1 ∼ N (0,Σw).

2.2. Distributed Observation Equation

Assume that N receive antennas are divided into G subblock-
s. Subblock g has Ng receive antennas, g = 1, ..., G. Let
sm(t),m = 1, ...,M , denote the transmitted signals, which
have normalized energy and are mutually orthogonal. At time k
the received signal vector at subblock g is denoted as rgk(t) =

[rgk1(t), rgk2(t), ..., rgkng
(t), ..., rgkNg

(t)]†, where rgkng
(t) repre-

sents echo accumulated at antenna ng of subblock g due to the
transmissions from the M transmit antennas. Assume at time k, the
separated signal model for the mngth path at receive antenna ng of
subblock g is

rgkmng
(t) =

√
Ekmα

g
kmng

sm(t−τgkmng
)e
j2πf

g
kmng

t
+vgkmng

(t),

(7)
where Ekm is the mth waveform’s transmitted power at time k.
The reflection coefficient αgkmng

, modeled as a zero-mean complex
Gaussian random variable, is assumed different for different path and
independent of others. In addition, vgkmng

(t) represents zero-mean,
complex Gaussian noise, spatially and temporally white with auto-
correlation function σ2

vδ(τ). τgkmng
and fgkmng

represent the time
delay and Doppler shift, respectively.

With the echoes processed at subblock g, a noise corrupted mod-
el of the warhead state values, xk, is generated using a maximum
likelihood (ML) estimator [16]. It can be expressed as

zgk = Hxk + egk, g = 1, ..., G, (8)

where H is referred to as the system observation matrix, and egk ∼
N (0,Σg

e).
Thus, the SSM of the warhead composes of the state equation

(4) and the distributed observation equation (8). The true and false
warheads mainly differ in the parameter matrix Fk+1 of the SSM,
which is utilized to complete warhead target recognition [7].

2.3. Hypothesis Testing

In the initial stage, the true and false warheads have the same motion
state values, i.e., Fk+1 = F0. Due to the separation of the true
and false warheads at time n, Fk+1 become different. On accoun-
t of self-controller, the true warhead keeps in a steady state, i.e.,
Fk+1 = F0. The false warhead, on the other hand, has different
micro-motions, such as tumbling and swing, leading to a differen-
t unknown transition matrix Fk+1 = Fc. As such, it renders an
abrupt change detection problem [17], which can be solved via a
binary hypothesis testing method.

We take each receive subblock as a detection unit. Then, the
local hypothesis testing at subblock g is built as follows

H0 : zgk, k = 0, 1, ..., n,

Fk+1 =

{
F0, k = 0, 1, ..., n− 2,
F0, k = n− 1,

H1 : zgk, k = 0, 1, ..., n,

Fk+1 =

{
F0, k = 0, 1, ..., n− 2,
Fc, k = n− 1.

(9)

3. CONSENSUS-BASED DISTRIBUTED DETECTION

3.1. Broadcast-Based Consensus

We treat G subblocks as the nodes of an undirected and connected
graph G = (V, E), where V is the set of vertices with |V| = G,



and E is the set of edges. The edge formation is related to node
communication connectivity, i.e., each pair of nodes is connected if
their Euclidean distance is smaller than transmission radius d named
connectivity radius. We assume that a communication within this
transmission radius always succeeds. Note that this model is a sim-
ple graph. The neighbors of subblock g are denoted by A(g) =
{h ∈ V : (g, h) ∈ E}.

Here, we use an asynchronous time model which has been
employed in [18] and [19]. In this model, we assume that each
subblock is equipped with a local clock. Each clock of a subblock
ticks independently according to a Poission process with rate λ.
Essentially, this is equivalent to a single clock which ticks according
to a Poission process with rate Gλ. Clearly, the probability that
one particular subblock’s clock ticks at a given time is equal to the
probability that any other clock ticks, which is equal to 1/G. We
use the number of clock ticks {0, 1, 2, ..., nk} as a measure of time,
where nk represents the time when the last broadcast occurs during
the kth observation interval [kT, (k + 1)T ]. Next, we will consider
the broadcast-update process during the kth observation interval
[kT, (k + 1)T ].

Suppose subblock g’s clock ticks at the beginning of the (n +
1)th time slot. Subblock g then broadcasts its state values to all its
neighboring subblocks. The group states will be updated as follows

zhk(n+ 1) =

{
zhk(n) + γ[zg,hk (n)− zhk(n)], h ∈ A(g), (10a)

zhk(n), h /∈ A(g),(10b)

where γ ∈ (0, 1) is usually referred to as the mixing parameter. In
the above expression, zg,hk (n) = zgk(n) + vg,hk (n), where vg,hk (n)
represents stochastic perturbation and its elements are independent
random variables with zero-mean and a finite variance. Then, the
state updating equation (10a) can be expanded as

zhk(n+1) = (1−γ)zhk(n)+γzgk(n)+γvg,hk (n), h ∈ A(g). (11)

Using the matrix notations, Zk(n) =
[
z1
k(n), ..., zGk (n)

]†
and

Vk(n) =
[
v1
k(n), ...,vGk (n)

]†
, where vhk(n) is an L × 1 column

vector, defined by

vhk(n) =

{
0, h /∈ A(g),

γvg,hk (n), h ∈ A(g).
(12)

We can combine (10b) and (11) into a compact form as

Zk(n+ 1) = P(n)Zk(n) + Vk(n), (13)

where P(n) ∈ RG×G is a stochastic matrix, which, with probabil-
ity 1/G and assuming subblock g’s clock ticks, takes the following
value

P(n) = I− γ
∑

h∈A(g)

(εhε
†
h − εhε

†
g), (14)

where εh represents a column vector with the hth element to be 1
and the rest to be 0. It is easy to verify that P(n)1 = 1.

Note that similar to the analysis in [18], we can prove that the
broadcast-based consensus algorithm will converge to a consensus
almost surely, in the absence of the perturbation vector Vk(n).

3.2. LOUD-Based Test Statistics

During the kth observation interval [kT, (k + 1)T ], the observation
vector will be updated to zgk(nk). For the LOUD detector [7], the

test statistics at subblock g can be expressed as

ΓgLOUD

(
zgk+1(nk+1)

)

=

L′∑
j=1

L′∑
i=1

∂2p(zgk+1
(nk+1)|zg

k
(nk);Fk+1)

∂F2
k+1

(i,j)

p
(
zgk+1(nk+1)|zgk(nk); F0

)
∣∣∣∣∣∣∣∣∣
Fk+1=F0

, (15)

where L′ is the dimension of the square matrix Fk+1. Note in (8)
that H is an L × L′ matrix. As usually L < L′, H is singular. In
this case, we consider Kalman filter iterations to calculate the test
statistics.

Combining (8) and (13), we are led to

zgk(nk) = Hxk + ẽgk, g = 1, ..., G. (16)

The detailed description of ẽgk is omitted here due to space limitation.
Equations (4) and (16) form the SSM of the warhead for the

consensus-based distributed detection. In the following, we derive
the test statistics of the consensus-based distributed LOUD detector.

First, we define Zgk
∆
= {zg0(n0), zg1(n1), ..., zgk(nk)}. Combin-

ing the consensus-based SSM and Kalman filter method, the defini-
tions of xk|k−1, Σx

k|k−1, zgk|k−1 and Σg
k|k−1 can be obtained. Then

present the iteration process and are expressed as

xk|k =xk|k−1 + Σx
k|k−1H

†
(
HΣx

k|k−1H
† + Σg

ẽ

)−1

×
(
zgk(nk)−Hxk|k−1

)
, (17)

Σx
k|k =Σx

k|k−1 −Σx
k|k−1H

†
(
HΣx

k|k−1H
† + Σg

ẽ

)−1

×HΣx
k|k−1, (18)

xk+1|k = Fk+1xk|k + Gk+1uk, (19)

Σx
k+1|k = Fk+1Σ

x
k|kF

†
k+1 + Σw, (20)

zgk+1|k = Hxk+1|k, (21)

Σg
k+1|k = HΣx

k+1|kH
† + Σg

ẽ. (22)

We can conclude as follows

zgk+1(nk+1)|Zgk ∼ N
(
zgk+1|k,Σ

g
k+1|k

)
. (23)

Then, p
(
zgk+1(nk+1)|Zgk ; F0

)
can be obtained.

Next we define

Πg
k+1(i, j) =

∂2p
(
zgk+1(nk+1)|Zgk ; Fk+1

)
∂F2

k+1(i, j)

∣∣∣∣∣
Fk+1=F0

=
1

(∆F )2

[
p
(
zgk+1(nk+1)|Zgk ; F0(i, j) + ∆F

)
+ p

(
zgk+1(nk+1)|Zgk ; F0(i, j)−∆F

)
− 2p

(
zgk+1(nk+1)|Zgk ; F0(i, j)

)]
. (24)

The LOUD-based test statistics in (15) can be calculated as

ΓgLOUD

(
zgk+1(nk+1)

)
=

L′∑
j=1

L′∑
i=1

Πg
k+1(i, j)

p(zgk+1(nk+1)|Zgk ; F0)
. (25)
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Fig. 2. PD of LOUD, ILR, and MLR detectors based on consensus
algorithm versus the ∆fs.

4. NUMERICAL RESULTS

Consider a MIMO radar equipped with M = 4 transmit antennas
and N = 8 receive antennas. The receive array is divided into three
subblocks. The total transmit energy is E = 25. Consider the spin-
ning motion of the warhead. The Fk+1 in (4) has the form as follows

Fk+1 =

 I3 T I3
1
2
(TωsΩs)

2

03 I3 Tω2
sΩ

2
s + 1

2
T 2ω3

sΩ
3
s

03 03 I3 + TωsΩs + 1
2
T 2ω2

sΩ
2
s

 ,
which is dependent on the rotation angular frequency ωs = 2πfs
with the initial rotation frequency fs = 1Hz and

Ωs=

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


where the micro-motion vector [ωx, ωy, ωz] = [0.6, 0.5, 0.6245].
Set the sampling time interval T = 0.1 s. Further, the acceleration
vector is assumed to be uk = [0, 0, 0, 0, 2, 9.6, 0, 0, 0]†, the initial
state vector as x0 = [100, 200, 1000, 100, 50, 10, 0.05, 0.06, 0.08]†

and the covariance matrix of the state noise as Σw = 0.2I9. We
define ∆fs as the rotation frequency change of the false warhead,
which characterizes the difference of the micro-motion between the
true and false warheads.

Denote H = [I6,06×3]. Assume that the lowpass equivalents
of the transmitted waveforms are frequency spread single Gaussian
pulse signals, expressed as

sk(t) =

(
2

Tt
2

) 1
4

exp

(
−πt2

Tt
2

)
exp(j2πk∆ft), (26)

where Tt = 0.1 and ∆f = 0.7/Tt are used to guarantee the orthog-
onality. Assume Σg

e to be a diagonal matrix with diagonal elements
determined by the Cramer-Rao bound (CRB) for the estimates of the
warhead’s position and velocity [6].

To evaluate the effectiveness of the consensus-based distribut-
ed LOUD detector, Fig. 2 shows the detection probability PD of
LOUD, ideal likelihood ratio (ILR), and mismatched likelihood ratio
(MLR) detectors [7] versus the ∆fs. Under the assumptions that two
arbitrary subblocks are within the transmission range of each other
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Fig. 3. PD of centralized, consensus, and hard-decision distributed
algorithms based on LOUD detector versus the ∆fs.

and no additive stochastic perturbations, it is easy to verify that this
algorithm converges to a consensus almost surely. In this figure, the
probability of false alarmPF is set to be 10−3 and the mixing param-
eter is chosen to be γ = 0.5. Note that, for LOUD-based detectors,
the test statistic is computed from (24) and (25), whereas for the ILR
and MLR, it is directly obtained because of the assumed known Fc.
The PD result is shown with respect to ∆fs for ∆fs ∈ [0, 3]. It
is clear from Fig. 2 that the LOUD detector achieves a higher PD
than the MLR detector, performs similarly to the ILR detector and
achieves unit PD when ∆fs reaches 3. As such, the results evidently
demonstrate the effectiveness of the proposed method in computing
the LOUD-based test statistics.

Fig. 3 compared the detection performance of the consensus-
based LOUD detector with the centralized LOUD detector and the
hard-decision distributed method. The parameter setting of the
consensus-based distributed LOUD detector in Fig. 3 is the same
as that in Fig. 2. The hard-decision distributed LOUD detector
makes a global decision according to K/G criterion at fusion center
with K = 2. Compared to the centralized detection algorithm, the
proposed distributed detection algorithm significantly reduces the
required communication load and the achieved detection probability
is slightly inferior. On the other hand, the proposed algorithm out-
performs the hard-decision method in the studied case. Therefore,
the proposed method is considered as an attractive approach when
low data transmission is desirable.

5. CONCLUSION

Based on MIMO radar observations, an SSM is built to describe the
kinetic motion of the warhead. The difference in micro-motion char-
acteristics between the true and false warheads can be reflected as
the difference of the SSM parameters. Ballistic warhead recognition
is then turned into a binary hypothesis test problem. We propose a
newly distributed detection algorithm, which contains the broadcast-
based consensus algorithm and LOUD test. In the case that the
observation matrix is singular, we adopt Kalman filter iterations to
obtain the LOUD-based test statistics. Finally, simulation results
demonstrate that the proposed algorithm achieves a high identifica-
tion accuracy, which is close to ideal centralized processor under
particular conditions.
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